
Towards DDoS Attack Detection using Deep Learning Approach

Sharmin Aktar, Abdullah Yasin Nur

Department of Computer Science

University of New Orleans, New Orleans, LA, US

saktar@uno.edu, ayn@cs.uno.edu

Abstract

Due to the extensive use and evolution in the cyber world, different network attacks have recently increased significantly. Distributed
Denial-of-Service (DDoS) attack has become one of the fatal threats to the Internet, where attackers send massive amounts of
packets to the target system to make online systems unavailable to legitimate users. Proper attack detection measurement is crucial to
defend against these attacks. This paper proposes a deep learning-based model using a contractive autoencoder to detect anomalies.
We train our model to learn the normal traffic pattern from the compacted representation of the input data, and then apply a stochastic
threshold method to detect the attack. Three renowned Intrusion Detection System datasets have been used for evaluation—CIC-
IDS2017, NSL-KDD, and CIC-DDoS2019. We have assessed the results against a basic autoencoder and other deep learning
approaches to show our model efficacy. Our results indicate a successful intrusion detection of the proposed method with an
accuracy ranging between 93.41% and 97.58% on the CIC-DDoS2019 dataset. Moreover, it achieved an accuracy of 96.08% and
92.45% on NSL-KDD and CIC-IDS2017 datasets, respectively.

Keywords:
Denial of service attack, Distributed denial of service attack, Intrusion detection systems, Deep neural networks, Anomaly
detection

1. Introduction

The fast advancement of cyberspace makes it crucial to iden-
tify intrusions that breach network security. With the evolve-
ment of different sophisticated intrusion techniques, attackers
can damage the network system within a short period. For ex-
ample, Amazon Web Services (AWS) experienced a 2.3 Tbps
Distributed Denial of Service (DDoS) attack in February 2020
[13]. More recently, Google reported that one of their cloud
customers was targeted with 46 million requests per second dur-
ing peak time in June 2022 [34]. According to Kaspersky Lab
[35], the number of DDoS attacks hit a record high in Q4 2021,
and the trend is increasing significantly. Therefore, the Intru-
sion Detection System (IDS) is a vital tool to ensure the data’s
availability, confidentiality, and reliability [15].

An Intrusion Detection System (IDS) is defined as a sys-
tem or software that discovers abnormal activity via monitor-
ing the network [12]. Usually, there are two types of IDSs:
the Network Intrusion Detection System (NIDS) and the Host
Intrusion Detection System (HIDS). In NIDS, the anomalous
traffic is detected utilizing all packet metadata and contents
across the network. In contrast, HIDS performs intrusion
detection on a particular endpoint and protects it against in-
ternal and external threats. IDSs can be classified either as
Signature-based or Anomaly-based, depending on their detec-
tion methods. Signature-based detection works best for identi-
fying known threats, where it detects malicious traffic based on

predefined rules. Anomaly-based IDS detects abnormal behav-
ior by modeling normal behavior via pattern extraction. Typi-
cally, Anomaly-based IDS can uncover complex and unknown
attacks, thus, performs better than signature-based IDS.

Denial-of-Service (DoS) attack is one of the most harmful
cyberattack types where perpetrators aim to exhaust the target’s
system by flooding traffic until the target is inaccessible to in-
tended users. Typically, these attacks are executed by flood-
ing the aimed machine with superfluous traffic before the target
becomes unresponsive. Distributed Denial of Service (DDoS)
attack, a variant of the DoS attack, is more pernicious than a
DoS attack. It is more difficult to defend because of employing
many compromised machines to deluge the victim with spuri-
ous traffic. These attacks cause a substantial financial loss in the
industries by impeding licit users’ access via exhaustion of the
victim server. According to Kaspersky Lab research, the global
financial impact of a DDoS attack is above $120K for small and
medium-sized businesses, and over $2M for enterprises per at-
tack on average [39]. Hence, efficacious detection methods are
essential to protect online services from attackers. This work
introduces a novel deep learning model for detecting network
traffic attacks.

Most existing IDSs often fail to detect unknown attacks be-
cause they rely on predefined patterns and signatures, although
they achieve high detection accuracy for the known ones. Be-
sides, they experience high false-positive cases, which circum-
scribe their real-life deployments. To address these issues,

Preprint submitted to Computer and Security February 8, 2023

conventional machine learning techniques have been exten-
sively used for intrusion detection. However, almost all tra-
ditional machine learning models fail to detect the attack from
an enormous dataset since they follow shallow learning meth-
ods [16, 17]. Deep learning models are helpful for complex,
large-scale network environments, which have the potential to
extract distinctive self-generated features without using hand-
crafted feature extractions [22]. As a result, most researchers in
this field focus on developing deep learning-based IDS.

The attack detection system presented in this paper employs
the principles of contractive autoencoder. Our model targets
to learn necessary information from the input data and recon-
structs the given traffic sample using the intermediate com-
pressed hidden layers. It only uses non-anomalous instances
from the training data to extract the regular traffic pattern on the
network. We have utilized a stochastic anomaly threshold ap-
proach based on the reconstruction loss to distinguish between
attack and non-attack instances. The choice of this threshold
depends on the fact that non-attack samples will produce a low
reconstruction error while a high error will be generated when
using the attack data. Rather than using a fixed threshold value,
we have run our model several times with different thresholds
to select the best one.

Our method can precisely detect known and unknown at-
tacks with the selected optimal threshold. We evaluate the pro-
posed method using three datasets, CIC-IDS2017, NSL-KDD,
and CIC-DDoS2019 [2, 3, 9]. We achieve the highest accu-
racy of our model as 97.58% on the CIC-DDoS2019 dataset,
whereas the model shows an accuracy of 96.08% and 92.45%
on the NSL-KDD and CIC-IDS2017 datasets, respectively. We
demonstrate the outperformance of our approach over widely
used deep learning models, including the Basic Autoencoder
(AE), Variational AE (VAE), and Long Short Term Memory AE
(LSTM AE). Our results show that the proposed model achieves
significant improvement. Specifically, the results show that
the proposed method outperforms other methods significantly
in the CIC-DDoS2019 dataset, where our accuracy range is
[93.41% − 97.58%] whereas the accuracy range for LSTM AE
[70.46% − 95.40%], VAE [70.46% − 90.20%], and Basic AE
[75.82% − 93.09%]. Additionally, our accuracy for the CIC-
IDS2017 dataset is 92.45%, whereas the accuracy for LSTM
AE is 88.69%, VAE 88.73%, and Basic AE 89.84%. Moreover,
our accuracy for the NSL-KDD dataset is 96.08%, whereas the
accuracy for LSTM AE is 93.2%, VAE 93.68%, and Basic AE
90.45%.

The main contributions of this paper can be summarized as
follows:

(a) We propose a deep learning method based on the con-
tractive autoencoder model for attack detection for Distributed
Denial of Service (DDoS) attacks. Our model uses a semi-
supervised learning approach where only non-attack instances
are used while training our model. The model reconstructs the
input with less reconstruction error for the non-attack data at
the output layer. In the case of an anomalous instance, the
trained model gives a high error rate, failing to regenerate it
properly. We have utilized this reconstruction error to distin-
guish between normal and anomalous instances.

(b) We employed a stochastic approach for identifying
anomalous instances based on reconstruction loss. Instead of
relying on a fixed threshold value, we conducted multiple runs
of our model with varying thresholds to choose the optimal one.

(c) The performance of the proposed method is evaluated by
using three benchmark datasets, NSL-KDD, CIC-IDS2017, and
CIC-DDoS2019. Our results show that the proposed method
can achieve up to 97.58% accuracy in detecting anomalies. Ad-
ditionally, we compare our method with other deep learning
models and show that our model surpasses those models sig-
nificantly.

The rest of the paper is arranged as follows. Section 2
presents the background and motivation. In Section 3, various
network attack detection methods have been reviewed. Sec-
tion 4 provides our methodology. Our experimental results have
been demonstrated in Section 5. Lastly, Section 6 provides dis-
cussion for our key findings and Section 7 concludes the paper.

2. Background and Motivation

Network traffic data usually contains high-dimensional fea-
tures. Therefore, proper data visualization techniques are
needed to select a suitable IDS model. There are existing tech-
niques for displaying these types of data. In this work, we
have shown the data arrangement of our evaluated samples us-
ing t-Distributed Stochastic Neighbor Embedding, known as
t-SNE [29]. The t-SNE models high-dimensional data by the
low-dimensional point such that the neighbor structure among
the data points remains maintained. Figures 1a and 1b dis-
play a t-SNE visualization of the NSL-KDD dataset and the
CIC-IDS2017(DoS) dataset, where the red color corresponds
to the attack samples, and the green color represents the nor-
mal samples. It shows that normal and attack samples share
some identic feature spaces. Thus, linear separation of these
two classes seems impossible, demonstrating the complication
of intrusion detection problems in network traffic. Addition-
ally, we can visualize the high degree of nonlinearity in our
data sample by observing the Andrews curve [30]. This curve
helps to visualize a high-dimensional data structure represent-
ing a high-dimensional feature space as a finite Fourier series.
Figures 2a and 2b show the Andrews curve for the NSL-KDD
and CIC-IDS2017 (DoS) dataset, where each curve corresponds
to an observation in the dataset. The figures show that the nor-
mal and attack data curves are entangled, showing the existence
of nonlinearity in the feature space. Hence, shallow machine
learning models cannot distinguish the attack samples because
of the nonlinearity in such datasets. Moreover, it is reported that
the performance of traditional techniques falls short in captur-
ing complex structures in data [41]. Therefore, deep learning
based techniques have garnered significant interest among re-
searchers [17, 27, 41].

Deep learning based anomaly detection models can be cate-
gorized as supervised, unsupervised, and semi-supervised. Su-
pervised learning models learn to make predictions or classify
new data by being trained on labeled data. Even though the
performance of supervised models can be relatively higher than

2

60 40 20 0 20 40
tsne_1

60

40

20

0

20

40

ts
ne

_2
NSL-KDD data T-SNE projection

Label
Normal
Attack

(a) t-SNE visualization for NSL-KDD

75 50 25 0 25 50 75
tsne_1

75

50

25

0

25

50

75

ts
ne

_2

CIC-IDS2017 (DoS) data T-SNE projection

Label
Attack
Normal

(b) t-SNE visualization for CIC-IDS2017

Figure 1: t-SNE visualization

(a) Andrews curve for the NSL-KDD dataset (b) Andrews curve for the CIC-IDS2017(DoS) dataset

Figure 2: Andrews Curve Visualization

other models, they are less popular due to the shortage of la-
beled training data in practice [41]. Additionally, supervised
models have problems with training set imbalance since normal
instances are far more than anomaly instances [18]. Unsuper-
vised learning models address these problems by using unla-
beled data for training. The models aim to uncover patterns or
structures in the data instead of making predictions or catego-
rizing new data points. Unsupervised methods tend to be vul-
nerable to noise and data corruption, leading to decreased ac-
curacy compared to supervised or semi-supervised techniques
[41]. Finally, semi-supervised learning models fill the gap be-
tween supervised and unsupervised learning models by lever-
aging the existing label of a single class to separate outliers.
Note that obtaining a normal data class is easier than getting
the anomalous data classes, where obtaining anomalous data
classes is often a costly process in many practical domains [15].
Using a one class labeled data can significantly enhance perfor-
mance compared to unsupervised methods [41]. Therefore, we
used semi-supervised learning model by using non-anomalous
instances from the training data to extract the regular traffic pat-
tern on the network.

Complex networks contain an extensive amount of features.
To simplify, researchers use autoencoders (AE) to reduce the
feature set from a high dimension to a lower dimension. How-
ever, this leads to loss of informative features. Researchers have
proposed various variants of autoencoders in the literature to
address this issue [1]. Basic autoencoder consists of an encoder
function that maps the input data to a lower-dimensional latent
space and a decoder function that maps the latent representa-
tion back to the original input space. Variational autoencoder
(VAE) is a generative model that uses an autoencoder architec-
ture to learn a probabilistic mapping from the input data to a
latent space and from the latent space back to the input space.
VAEs are used for generating new data and unsupervised rep-
resentation learning. One major problem of VAE is that VAEs
are susceptible to failing to identify outliers when the anoma-
lies in the test data have the same distribution as the anoma-
lies in the training data [43]. Sparse Autoencoder (SAE) is a
type of autoencoder that is trained to reconstruct the input data
with a smaller number of neurons in the hidden layer being
activated to learn a compact representation of the input data.
The sparsity constraint is imposed through a sparsity regular-

3

ization term in the loss function, which encourages the model
to activate only a small number of neurons to reconstruct the in-
put data. SAE models may experience over-specification prob-
lems in case the sparsity constraints are not optimized properly,
which leads to poor generalization performance. Concrete Au-
toencoder is designed explicitly for discrete or categorical data
by adding a concrete relaxation to the encoding process [42].
The use of continuous relaxation in the encoding process en-
ables the model to handle discrete variables in a smooth and dif-
ferentiable manner, facilitating training through gradient-based
optimization methods. However, the stochastic nature of con-
crete autoencoders can lead to issues with reproducibility across
multiple runs. Moreover, the scalability issues of continuous
relaxation based techniques pose difficulties in their application
and may not be feasible for use in complex networks [44].

Reconstruction Error (RE) and Reconstruction Probability
(RP) are two popular scoring measures for anomaly detection
in neural networks. RE evaluates the discrepancy between the
input data and the data generated by the autoencoder. This dis-
crepancy is commonly quantified using a loss function, like
the mean squared error. The objective of the autoencoder is
to minimize the reconstruction error, thus ensuring that the re-
constructed data resembles the original input data as closely as
possible. On the other hand, RP calculates the chance of a par-
ticular input data point being reconstructed by the autoencoder.
The autoencoder calculates a probability distribution across all
possible reconstructions of the input data and the reconstruction
probability represents the most probable reconstruction. This
metric is frequently utilized in variational autoencoders for cre-
ating new data samples that resemble the input data. VAE de-
termines the reconstruction probability by estimating both the
mean and variance of the output dimensions. It is reported that
the joint optimization of both mean and variance in the VAE
creates the variance shrinkage problem and underestimation of
variance [45]. These problems can lead to poor generalization
of new data.

In this paper, we propose Deep Contractive Autoencoder
(DCAE) model which is designed to learn a hierarchy of
encoder-decoder pairs, where each pair is responsible for recon-
structing a different level of abstraction in the input data. The
incorporation of the contractive regularization term in the deep
contractive autoencoder enhances its robustness against slight
variations in the input data, thereby boosting its performance
in noisy or real-world scenarios. We have utilized a stochastic
anomaly threshold approach based on the reconstruction error.
The proper reconstruction of normal traffic makes our model
efficient in separating the attack data from the non-attack data
since our detection method is based on the fact that the anoma-
lous sample will deviate from the normal one by generating
higher reconstruction loss.

3. Related Work

Many approaches have been suggested to defend systems
against DDoS attacks [7, 19, 20, 21]. DDoS defense mecha-
nisms can be categorized as attack detection, attack reaction,
and attack source identification. Attack detection techniques

analyze the incoming packets and identify attacks in case of
an anomaly in the observed traffic [18, 36]. Attack reaction
techniques aim to mitigate the impact of attacks by applying
resource management [11]. The last category is attack source
identification, where the victim site aims to detect the attacker’s
position even if the attacker spoofs its Internet Protocol (IP) ad-
dress [14, 33, 37]. This paper falls into the first category, where
we aim to detect anomalies by applying a deep learning method
based on the contractive autoencoder model.

The notion of Intrusion Detection System (IDS) was pri-
marily introduced by James Anderson at the National Security
Agency in 1980 [23]. His idea comprised several tools for re-
viewing system audit trails to detect abnormal activities. Later,
many studies have been examined, which have made signifi-
cant progress for IDS. Machine learning (ML) is suitable for
intrusion detection due to its data modeling and prediction ca-
pability. Moreover, deep learning based models have further
advancements in attack detection accuracy. This section dis-
cusses current attack detection methods suggested by various
researchers.

Elsayed et al. [15] proposed a model using Long Short
Term Memory (LSTM) autoencoder combining One-class Sup-
port Vector Machine (OC-SVM) algorithms to enhance perfor-
mance. They utilized only normal instances during training to
learn the normal traffic behavior and to achieve the compressed
representation of the input data. Then OC-SVM approach was
applied to the reduced representation to achieve better classifi-
cation outcomes. They evaluated their model using the recent
InSDN dataset. In another work, Elsayed et al. [24] proposed
a deep learning framework using the LSTM autoencoder for
network attack identification. They trained their model using
only the normal samples from the dataset. By observing the
distribution of the reconstruction loss in the training data, they
picked the optimal threshold value, providing the best accuracy
for attack detection. They compared the model with widely
used classical ML algorithms and some modern techniques in
the NSL-KDD dataset for evaluation purposes.

The authors in [25] pointed out the over-generalization prob-
lem with the AE-based anomaly detection method. To over-
come it, they suggested a model using the Memory-Augmented
Deep Autoencoder (MemAE). Their model includes an addi-
tional memory module between the encoder and decoder, which
targets reconstructing the attack samples similar to the normal
ones during training. To separate anomalous data from the be-
nign sample, they chose a threshold from the reconstruction loss
percentiles of normal samples providing the best F1- score, the
harmonic mean of the precision and recall, in the validation set.
They evaluated the classification results on NSL-KDD, UNSW-
NB15, and CIC-IDS2017 datasets, based on the AUROC value
and F1-Score. The model achieved an AUROC value of at least
0.9 for all datasets. At the same time, it achieved the highest F1-
Score of 95% for the NSL-KDD dataset. The authors also com-
pared the results with an AE and a one-class SVM (OCSVM)
model.

Ding and Zhai [16] proposed an Intrusion Detection Sys-
tem (IDS) based on Convolutional Neural Network (CNN) with
multi-stage features. In the model, they created a deep layer

4

of input features using three stacked stages, containing a con-
volution layer followed by max pooling for feature extraction.
Before the final layer, two dense layers accompanied by one
softmax layer were added and concatenated with the staged
features. Lastly, a softmax classifier was used to extract the
target. The authors compared the results with conventional ma-
chine learning and deep learning methods on the full NSL-KDD
dataset. They showed the outperformance of their model com-
pared with other methods.

Farahnakia and Heikkonen [12] suggested an IDS model
(DAE-IDS) containing four autoencoders where each auto-
encoders output in the current layer proceeds to the next one
as an input. Moreover, they followed a greedy layer-wise train-
ing manner which means an autoencoder is trained once the
previous training is finished. After training the autoencoders,
a softmax classifier was used to identify the attack instances.
They evaluated the model’s performance using a widely known
dataset, KDD-CUP’99. The experimental results showed a high
detection rate of 94.53% which outperformed other methods.

Aygun and Yavuz [28] suggested two anomaly detection
models using autoencoder and denoising autoencoder. They
introduced a novel stochastic anomaly threshold determination
method to enhance their model’s performance. They trained
their models using semi-supervised learning on the recent NSL-
KDD dataset and analogized the result with other singular and
hybrid models. The proposed methodology achieved an accu-
racy of 88.28% and 88.65% for AE and DAE models, respec-
tively.

Wang et al. [31] proposed a novel IDS model combining
stacked contractive autoencoder (SCAE) and support vector
machine (SVM) algorithm. They utilized SCAE to extract nec-
essary low-dimensional features from raw input data automati-
cally. The model’s training process contained three stages: un-
supervised pretraining, unrolling, and supervised fine-tuning.
Once the training was finished, the SVM classifier was used to
detect anomalous samples from the extracted features. The re-
searchers conducted some experiments to evaluate the detection
performance of the model on two well-known datasets, NSL-
KDD and KDD’99. The approach achieved an accuracy of
88.73% for binary classification tasks on the NSL-KDD dataset.

Kim et al. [32] designed an IDS model based upon a Con-
volutional Neural Network (CNN) and evaluated its perfor-
mance through comparison with a Recurrent Neural Network
(RNN). For the experimental purpose, they utilized two pop-
ular datasets, KDD CUP 1999 dataset (KDD) and CSE-CIC-
IDS2018, mainly focusing on the DoS category. Furthermore,
they proposed an optimal CNN design for performance en-
hancement.

The method called DeepDefense is proposed for detecting
DDoS attacks by using a deep neural network [27]. The sug-
gested model looks for the repeated pattern representing attack
and locates them in a long-term traffic pattern, formulating them
as a sequence classification problem. Their approach combined
different neural network models: CNN, LSTM, and GRU. They
evaluated the DeepDefense model on an extracted part from
the large-scale dataset, ISCX2012, containing the DDoS at-
tack. The experimental results surpassed the traditional ma-

Input Layer Output LayerHidden Layer

Bottleneck

Figure 3: Structure of a Basic Autoencoder

chine learning algorithms showing an error rate reduction of
5.4% on the larger data set.

Our model considers a deep learning approach based on a
contractive-autoencoder for detecting attacks in network traffic.
We propose a novel framework where we devise our model as
a binary classification problem, in which each data sample will
be classified into either normal or attack categories.

4. Methodology

In this section, we present the attributes of our framework
and the system architecture of our suggested intrusion detection
model.

4.1. Autoencoder

The proposed attack detection model uses autoencoder at-
tributes based on a semi-supervised learning approach. Autoen-
coder was first introduced [1] as a dimensionality reduction ap-
proach, where the output of the encoder denotes the lessened
representation, whereas the decoder’s output targets to recreate
the original input from the encoder’s representation through a
cost function minimization process. An autoencoder aims to re-
construct its input vectors as the target output by extracting the
most representative data features.

An autoencoder consists of a single input and output layer
with at least one hidden layer. The input and output layer of the
autoencoder always contains the same unit except in the hidden
layer. Typically, the hidden layer’s size is less than the input or
output layer.

There are two stages called encoding and decoding in the au-
toencoder. In the encoding phase, an autoencoder compresses
the input with fewer units by using its hidden layer. During the
decoding part, it attempts to rebuild the initial input by utilizing
the encoded representation from the hidden layer.

In case an autoencoder consists of only one hidden layer, it
is called the basic autoencoder. Figure 3 illustrates the structure

5

of the basic autoencoder. During the encoding stage of a basic
autoencoder, an encoding function f is used, which converts the
initial input x into a latent representation h, generally stated as
code or bottleneck. It has the following form:

h = f (x) = σ(Wx + b), (1)

where σ is usually a nonlinear activation function, such as a lo-
gistic sigmoid function or a rectified linear unit. A weight ma-
trix W and a bias vector b are the encoding parameters utilized
during training the autoencoder. Those are initialized randomly
and then updated iteratively through backpropagation. The de-
coder function g is utilized in the decoding phase, which con-
verts the hidden representation h into a reconstruction x′ with
the same shape of x:

x′ = g(h) = σ′(W ′h + b′), (2)

where σ′ is the decoder’s activation function, b′ and W ′ repre-
sent the bias vector and weight matrix, respectively.

The training of an autoencoder aims to minimize the recon-
struction error on a training dataset, Dn by finding parameters
θ = {W, b, b′} [1]. It corresponds to the minimization of the
following objective function:

JAE(θ) =
∑
x∈Dn

L(x, g(f (x))), (3)

where L is the reconstruction loss, defined as the gap between
the original and reconstructed input. The typical loss function
used in the autoencoder is squared error L(x, x′) = ∥x − x′∥2 ,
which is the measurement of similarity between x and x’. When
the inputs range between 0 to 1, the cross-entropy loss is used,
which is represented in the below equation:

L(x, x′) = −
dx∑
i=1

xi log(x′i) + (1 − xi) log(1 − x′i) (4)

4.2. Contractive Autoencoder

A simple autoencoder tries to compress the information of a
given data while keeping the reconstruction loss as less as pos-
sible. In contrast, a contractive autoencoder aims to learn useful
information from the input data, reducing the representation’s
sensitivity towards training the input data [1]. It makes the hid-
den representation, f (x) of the autoencoder, invariant to small
perturbation of the training inputs x, which is ensured by penal-
izing its sensitivity towards that input. The penalized term fol-
lows the Frobenius norm of the Jacobian J f (x) for the encoder
activation sequence of the input [1]. The Frobenius norm, also
known as the Euclidean norm, is the square root of the sum of
the absolute squares of elements of an m x n matrix. The Jaco-
bian matrix is the matrix of all first-order partial derivatives of
a vector-valued function.

The penalty term is formally defined as the squared Frobe-
nius norm of the Jacobian matrix of partial derivatives associ-
ated with the encoded features:

∥J f (x)∥2F =
∑

i j

(
∂h j(x)
∂xi

2

) (5)

The objective function of Contractive AutoEncoder (CAE)
obtained with the regularization term of equation 5 is as fol-
lows:

JCAE(θ) =
∑
x∈Dn

L(x, g(f (x))) + λ∥J f (x)∥2F (6)

where the first part represents the reconstruction loss and the
second one denotes the penalty or the regularizer. λ corresponds
to the penalty coefficient utilized to adapt the consonance of the
regularization in the objective function.

4.3. Our Model

This section introduces our proposed framework based on the
deep learning model for network attack detection. We can state
the intrusion detection problem as assigning a label indicating a
normal or attack sample based on reconstruction attributes on a
given dataset. Our model targets to learn necessary information
from the input data and reconstructs the given traffic sample.
It only uses non-anomalous instances from the training data to
extract the regular traffic pattern on the network. The model
reconstructs the input with less reconstruction error for the non-
attack data at the output layer. In the case of an anomalous
instance, the trained model gives a high error rate, failing to
regenerate it properly.

Deep learning methods outperform traditional machine
learning approaches since they can represent the input feature
precisely with automatic extraction of the discriminatory fea-
tures using multiple processing layers. Our proposed approach
uses a contractive autoencoder, which can estimate a good rep-
resentation of the input feature space by extracting the essential
features. A contractive autoencoder utilizes an optimum loss
function by optimizing the penalty term to achieve the invariant
representation of the input data. The lower-dimensional latent
representation forces the model to learn only the essential fea-
tures of the input. It can reconstruct the data in the output layer
very well by extracting the significant features from the nor-
mal sample. The proper reconstruction of normal traffic makes
our model efficient in separating the attack data from the non-
attack data since our detection method is based on the fact that
the anomalous sample will deviate from the normal one by gen-
erating higher reconstruction loss.

Our model uses Deep Contractive Autoencoder (DCAE),
containing two encoder and decoder layers, to learn the rep-
resentations of the network sample in a semi-supervised man-
ner. Figure 4 presents our methodology. The input layer of
our DCAE model takes the input from the training dataset con-
taining 121 features of the NSL-KDD datasets and 66 features

6

Dataset

Data Pre - Processing

- Feature Reduction
- Feature Conversion
- Duplicate Removal
- Feature Normalization

Random Shuffle

DCAE Training

Trained DCAE

Selection of attack
threshold

Training Set Testing Set Attack
Threshold

Trained DCAE

Normal Attack

Validation Set

Attack
Threshold

Figure 4: The methodology for our model

for the CIC-IDS datasets. The encoder block generates a fixed
range feature vector h from the input data x. Then it decreases
the initial feature vector’s dimension sequentially. In our exper-
iments, the first and second encoder layers reduce the dimen-
sions to 32 and 16 for the CIC-IDS dataset and 60 and 30 for
the NSL-KDD dataset, respectively.

After the encoding stage, the decoder block generates the
output feature vector, x′, from the encoded data. The layers in
the decoder block are placed in the opposite sequence of the en-
coder layers. The dimensions are incremented to 16 and 32 after
the first and second decoder layers for the CIC-IDS datasets,
whereas they are increased to 30 and 60 for the NSL-KDD
dataset for the subsequent decoder layers. The last layer of the
decoder block goes through a fully connected layer to produce
the output feature vector, x′. Several activation functions can be
utilized in the hidden layers, such as linear, softmax, sigmoid,
tanh, and rectified linear units. Our model utilizes a non-linear
activation function, sigmoid, in the hidden layers since it can
capture more valuable features from the input data. Figure 5
shows the structure of our proposed model for the NSL-KDD
dataset. The design will be changed in the CIC-IDS dataset
since the number of units in the layer will vary.

We aim to reconstruct an analogous output feature vector x′

to the input feature vector x. Since a contractive autoencoder
aims to learn useful information from the input data, we have
used this framework for our attack detection model. We have
employed the contractive loss as a reconstruction error between
input data x and output representation x′. An additional penalty
term is used with the classical reconstruction loss function of
autoencoders in this loss function. This penalty is the Frobenius
norm of the Jacobian matrix of the encoder activations concern-
ing the input, stated in equation 5. This penalized term results
in a localized space contraction which extracts robust features
on the activation layer. The details of this autoencoder and the

x1

x2

x121

h(1)1

h(1)2

h(1)60

h(2)1

h(2)2

h(2)30

h'(1)1

h'(1)2

h'(1)60

x'1

x'2

x'121

Input,x Output,x'

Input Layer Output Layer

Code

Encoder
Decoder

Figure 5: The structure of our proposed model (NSL-KDD dataset). For the
CIC-IDS datasets, neuron size will differ.

loss function calculation can be found in section 4.2. Moreover,
Algorithm 1 presents the contractive loss calculation. We used
Kristiadi’s implementation for Keras [38]. The first line shows
the calculation of the mean squared error between the true and
predicted one, which is added to the penalty term of the con-
tractive autoencoder. The penalty is measured as the squared
Frobenius norm of the Jacobian matrix of partial derivatives as-
sociated with the encoder function. Line 3-7 demonstrates the
necessary calculation for acquiring the penalty term. Finally,
our model’s contractive loss is measured as shown in line 9.

Our proposed methodology for attack detection is based on
the observation that an autoencoder is trained using only normal
data, it will provide a good reconstruction by generating a low

7

Algorithm 1 Calculation of Contractive Loss [38]

1: function Contractive Loss(y pred, y true)
2: mse = K.mean(K.square(y true − y pred), axis = 1)
3: W = K.variable(value=model.get layer(′encoded 2′)
4: .get weights()[0])
5: W = K.transpose(W)
6: h = Model.get layer(′encoded 2′).output
7: dh = h ∗ (1 − h)
8: lam = .01
9: contractive = mse + lam ∗ K.sum(dh2 ∗

K.sum(W2, axis = 1), axis = 1)
10: return contractive
11: end function

reconstruction error while yielding a high reconstruction error
for an anomalous one. Thus, successful detection of an attack
scenario depends on the optimized reconstruction of the normal
data. Anomalous data can be identified by selecting a proper
threshold based on the reconstruction error (RE). This thresh-
old can be called an anomaly threshold. A test sample will be
labeled an anomaly when the trained autoencoder reconstructs
it with a higher RE than the threshold. Otherwise, a normal la-
bel will be assigned. This threshold needs to be chosen wisely
for determining an attack sample since it can cause substantial
false detection by selecting weak thresholds.

In this work, we have proposed an intrusion detection model
utilizing a stochastic approach to select the anomaly threshold.
We analyze the threshold value’s significance for our model by
looking at the dataset’s reconstruction loss distribution. In the
model, only normal samples have been used during training,
while the validation and testing datasets comprise a combina-
tion of normal and anomalous samples. We have calculated the
optimal threshold from the validation dataset instead of obtain-
ing it directly for the test set and applied that threshold during
testing. The detailed algorithm for threshold measurement has
been demonstrated in Algorithm 2. We examine the range of
(minimum and maximum reconstruction error) from the train-
ing set with 0.001 intervals to determine the best-performing
threshold. In order to distinguish normal data from anomalous
one, we start with the highest RE (stated as max normal re in
line 4) of training data as the anomaly threshold, which has
been stated in line 5. After that, we calculate the accuracy of
our model using the validation dataset. If the obtained accuracy
is better than the previous, we save it along with the threshold
value. We run several iterations to find our optimal threshold
giving the best accuracy until it reaches the limit value, which
we have fixed to be the lowest reconstruction error of the train-
ing data, denoted as min normal re in line 3. Line 6-10 cal-
culates the accuracy of our model with the obtained threshold
in the validation data and stores the threshold with the best ac-
curacy. After each iteration, the threshold value has been de-
creased by 0.001.

Figure 6 presents our threshold selection method. We have
demonstrated the Reconstruction Loss Distribution Plot (nor-
mal and attack data) for the CIC-IDS2017(DoS) dataset in Fig-

Algorithm 2 Threshold Measurement Algorithm
Input: Training Data (X Train), Validation Data(X Val)
Output: Optimal Threshold

1: Train Model DCAE with X train
2: Calculate Maximum and Minimum Reconstruction Error (RE)

from X Train :
3: min normal re = np.min(train loss normal)
4: max normal re = np.max(train loss normal)
5: Initialize Threshold with the Maximum RE:

best threshold = threshold = max normal re
6: while threshold > min normal re do

Calculate the Accuracy of DCAE on X Val by using
threshold

7: if accuracy > best accuracy then
8: best accuracy = accuracy
9: best threshold = threshold

10: end if
11: threshold = threshold - 0.001
12: end while

Algorithm 3 Detection Method
Input: Model(DCAE), Threshold(th), Testing Data(X Test)
Output: Labeled Sample

1: while x in X Test do
2: x′ ← Model Predict(x)
3: δ← RE(x, x′)
4: if δ ≤ th then
5: label it as normal
6: else
7: label it as an attack
8: end if
9: end while

ure 6a. Blue color denotes the normal data and red denotes
the attack data. A bar plot depicts the histogram, and the solid
black line indicates the optimal threshold value, which divides
the normal and the attack classes. A blue and red dotted line
denotes our model’s minimum and maximum threshold bound,
which we have observed from the training sample. The X-axis
denotes reconstruction loss, and the Y-axis is the frequency. In
Figure 6b, we have shown the Accuracy variation for different
thresholds within the range. Instead of using any fixed thresh-
old, we have iterated our experiment for different reconstruc-
tion loss value from the training data as the anomaly threshold.
The optimal threshold for obtaining the best accuracy is then
recorded for our model evaluation.

Algorithm 3 describes the attack detection method of our
model. After the best threshold has been found from the valida-
tion set, our model predicts the class label using that threshold
from the test dataset. First, a reconstruction is generated from
the test data using the trained model as shown in line 2. After
that, the reconstruction loss is calculated between the original
test data and its reconstruction. Next, the loss is compared with
the threshold generated from the algorithm 2. In lines 3-7, the
algorithm compares the loss value with the threshold. In case
the loss value is less than or equal to the threshold, it is labeled
as normal; otherwise, it is classified as an attack sample.

5. Experiments

In this section, we first summarize the datasets utilized for
our experiments. After that, we explain the evaluation metrics

8

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Reconstruction Loss

0

200

400

600

800

1000

1200

1400

1600

Fr
eq

ue
nc

y

Attack
Normal
Optimal Threshold
Minimum Threshold Bound
Maximum Threshold Bound

(a) Reconstruction Loss Distribution Plot for the CIC-IDS2017(DoS) dataset

0.03 0.04 0.05 0.06 0.07
Threshold

0.905

0.910

0.915

0.920

0.925

Ac
cu

ra
cy

(b) Accuracy vs Different threshold

Figure 6: Threshold Selection Method

Table 1: CIC-IDS2017 Dataset

Day Traffic
Monday Benign
Tuesday SSH & FTP Brute Force

Wednesday DoS/DDoS & Heartbleed
Thursday Web Attack & Infiltration

Friday Botnet, Portscan & DDoS

of our proposed model’s performance, followed by details about
our experimental setup. Finally, we show the experimental re-
sults of our proposed model and compare them with the related
works.

5.1. Datasets
Several intrusion detection evaluation datasets are available,

consisting of benign and anomalous network traffic data. Since
we focus our experiments on DoS/DDoS attack detection, we
selected three datasets, NSL-KDD, CIC-IDS2017, and CIC-
DDoS2019.

The first evaluation dataset for our experiment is the CIC-
IDS2017 dataset [2], which was developed by the Canadian In-
stitute for Cybersecurity (CIC). This dataset covers the most re-
cent DoS/DDoS attacks and the realistic benign traffic. It con-
tains a varied types of protocols along with attack variations.
Hence, the CIC-IDS2017 dataset is suitable for our model eval-
uation. The CIC-IDS2017 dataset captured both normal and
attack data for five days, from Monday, July 3, 2017, to Fri-
day, July 7, 2017. Benign data was captured only on Monday,
while the other days included attack data. The executed attacks
contain Botnet, Brute Force FTP, Brute Force SSH, Heartbleed,
Web Attack, Infiltration, DoS, and DDoS. Table 1 summarizes
the traffic recorded per day. In this work, we have experimented
with our model using only the DoS & DDoS attack dataset,
which comes from the sample of the Wednesday in CIC-IDS-
2017 dataset.

The second dataset used in our model evaluation is the NSL-
KDD [3], which was published by the CIC to solve some in-
herent problems of the KDD Cup’99 dataset [5]. The clas-
sical KDD Cup data set [4] was established by the Defense

Table 2: NSL-KDD Attack Categories

Category Attacks
Probe ipsweep, mscan, nmap, portsweep, saint, satan

DoS apache2, back, land, mailbomb, neptune, pod,
processtable, smurf, teardrop, udpstorm, worm

U2R buffer overflow, loadmodule, perl, ps, rootkit,
sqlattack, xterm

R2L

ftp write, guess passwd, httptunnel, imap,
multihop, named, phf, sendmail, snmpgetattack,
snmpguess, spy, warezclient, warezmaster, xlock,
xsnoop

Advanced Research Projects Agency (DARPA) and has been
widely used as a benchmark for Intrusion Detection model eval-
uation [6]. However, the KDD Cup’99 has multiple problems
[5], including class imbalance and redundant records. These
drawbacks were resolved in the NSL-KDD dataset; therefore,
the NSL-KDD data set has been widely used in several stud-
ies [6, 8] as a benchmark data set in the development of NIDSs
for real-world applications. Hence, NSL-KDD fits our work’s
evaluation purpose and the comparison with relevant research.
The NSL-KDD dataset covers DoS, probing, Remote to Local
(R2L), User to Root (U2R), and benign classes. The details
of this dataset have been summarized in Table 2. This dataset
is extracted directly through TCP/IP connections and contains
forty-one features, such as connection duration, protocol type,
and accumulated traffic characteristics in each interval [6].

Our last evaluation dataset, which we have used for our
model, is the recently released CIC-DDoS2019 [9], developed
by the Canadian Institute for Cybersecurity (CIC). The dataset
contains benign and contemporary DDoS attacks, which re-
semble real-world data. Several new attacks have been im-
plemented using TCP/UDP-based protocols at the applica-
tion layer, and a new taxonomy has been proposed in terms
of reflection-based and exploitation-based attacks. For this
dataset, the B-Profile system [10] has been utilized to build
users’ abstract behavior based on the HTTP, HTTPS, FTP,
SSH, and email protocols. The dataset was collected on two
separate days for training and testing evaluation. The train-

9

Figure 7: The attack distribution inside the CIC-DDoS2019 dataset [9]

ing set contains 12 DDoS attacks, including SNMP, NetBIOS,
LDAP, TFTP, NTP, SYN, UDP, WebDDoS, MSSQL, UDP-
Lag, DNS, and SSDP DDoS-based attacks. The testing data
includes 7 DDoS attacks PortScan, SYN, MSSQL, UDP-Lag,
LDAP, UDP, and NetBIOS. Figure 7 shows the distribution of
the different attacks in the dataset. The researchers extracted
more than 80 flow features in the CIC-DDoS2019 dataset using
CICFlowMeter tools [26]. The dataset is publicly available in
both PCAP file and flow format on the Canadian Institute for
Cybersecurity website.

5.2. Dataset Pre-processing
This paper emphasizes a binary classification problem for

anomaly detection wherein each observation is categorized as
a normal or attack class. Before training the IDS model,
we enacted the following pre-processing steps on our selected
datasets:

• The datasets from CIC-IDS2017 and CIC-DDoS2019
contain different socket information, namely
Source/Destination IP, Source/Destination Port, and
flow ID. We removed socket-involved features from the
data samples to eliminate the overfitting problem since
such data can vary from network to network. The final
dataset contains 77 & 78 various features, besides the
traffic label of the CIC-IDS2017 and CIC-DDoS2019,
respectively.

• We used one-hot encoding to convert the categorical fea-
tures, such as protocol type, services, and flag, of the NSL-
KDD dataset into numerical features. For example, TCP,
UDP and ICMP protocols have been mapped to (1,0,0),
(0,1,0) and (0,0,1), respectively. Similarly, the ’flag’ fea-
ture containing 11 values and the ’services’ feature with 70
values have been mapped to numerical features. Thus, 41
original features are finally transformed into 121 numeric
features.

• The non-numerical class labels are also converted into nu-
meric categories using binary encoding. Since we have
considered only binary classification in this model to iden-
tify the anomalous and normal traffic from input data,
those instances are assigned to 1 and 0, respectively.

• Duplicity in a dataset may lead to a bias towards more fre-
quent records while training the anomaly detection model.
Hence, we removed all the duplicate records from the data
and kept only one copy of each record to resolve this issue.
After the operation, the number of samples is reduced to
587, 966 from the CIC-IDS2017 (DoS) dataset. We also
removed those samples containing the NaN and INF fea-
ture values from the dataset.

• The numeric features have been normalized to remove the
effect of the original feature value scales. We have used
the Min-Max Normalization for each feature, which re-
scales the range of features to scale the range in [0, 1].
The below equation represents the formula for Min-Max
Normalization:

zi =
xi −min(x)

max(x) −min(x)
(7)

where xi is a d-dimensional feature vector from the train-
ing dataset and zi is the ith normalized data.

• In case all the values in the columns are the same, it
does not affect the learning but increases the data di-
mension. Therefore, those constant valued features have
been removed from our dataset. For example, the column
’num outbound cmds’ in NSL-KDD consists of only
zero values; hence, it has been removed from the samples.
Moreover, table 3 shows the list for the CIC-IDS2017 DoS
dataset, which contains ten features containing zero val-
ues.

Table 3: List of Constant Valued Features in CIC-IDS2017 (DoS) Dataset

Bwd PSH Flags Fwd URG Flags
Bwd URG Flags CWE Flag Count

Fwd Avg Bytes/Bulk Fwd Avg Packets/Bulk
Fwd Avg Bulk Rate Bwd Avg Bytes/Bulk

Bwd Avg Packets/Bulk Bwd Avg Bulk Rate

10

5.3. Evaluation Metrics

Four performance metrics have been used for evaluating our
proposed model: Precision, Recall, F1-Score, and Accuracy.
These metrics are calculated by using four different measures,
true positive (TP), true negative (TN), false positive (FP), and
false negative (FN):

• TP: If an attack instance is correctly labeled, it is measured
as TP.

• FP: If a normal instance is labeled as an attack, it is mea-
sured as FP.

• TN: If a normal instance is labeled as normal, it is mea-
sured as TN.

• FN: If an attack instance is labeled as normal, it is mea-
sured as FN.

Precision: Ratio of the number of correctly classified attack
samples to the total number of instances which are classified as
an attack.

Precision =
TP

TP + FP
(8)

Recall: Ratio of the number of correctly classified anomalous
instances to the number of all actual anomalous instances.

Recall =
TP

TP + FN
(9)

Accuracy: Ratio of the number of correctly classified anoma-
lous and normal instances to the number of all instances.

Accuracy =
TP + TN

TP + FP + TN + FN
(10)

F1-score: Harmonic average of the precision and recall met-
rics to express the performance of the model.

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(11)

We have also utilized Confusion Matrix, a specific table lay-
out that allows visualization of the performance of an algorithm
in our work. Table 4 shows the definition of confusion matrix.

Table 4: Confusion Matrix

Predicted Class
Anomaly Normal

Actual Class Anomaly TP FN
Normal FP TN

Table 5: Data Distribution Of Training, Validation and Test Sets

Label Training Set Validation Set Test Set

CIC-IDS2017 (DoS) Normal 291777 9157 9157
Attack - 9157 9157

NSL-KDD Normal 47215 5668 5668
Attack - 5668 5668

Table 6: Hyperparameter for our Model

Parameter Value
Epoch & Batch Size 100 / 32
Activation Function Sigmoid(hidden) / Linear(Output)

Optimizer Adam
Loss Function Contractive

No of Hidden Layers 2
Hidden Neuron Size 60/30, 32/16

5.4. Experimental Setup

We have used Keras as a deep learning framework in our
model. The experiment is performed on Jupyter Notebook us-
ing 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz 1.80
GHz with 16GB RAM.

After the dataset pre-processing, normal and attack samples
in the dataset were shuffled separately. We partitioned each
dataset into three sections training, validation, and testing sub-
set. The training dataset contains only normal samples, whereas
test and validation datasets individually have the same number
of normal and anomalous samples. Our model is built using
the training set while the validation set is used to fine-tune the
model’s hyper-parameters e.g., the number of hidden layers in
the proposed model. Besides, the test set is used to evaluate the
model performance. Table 5 displays the data partitioning of
our model.

In our experiment, the linear layer takes the decoder output
and reconstructs the input data. We used Contractive Loss as
a cost function with Adam Optimizer and Sigmoid function
for activation in hidden layers. We trained the model using
100 epochs and a batch size of 32. Table 6 lists all the hyper-
parameters of our model.

We executed several experiments using different values of
hyperparameters to get optimal results. Selection of the best
values of the hyper-parameters is crucial for creating a suc-
cessful neural network architecture, as the trained model be-
havior depends on these values. We evaluated the model’s per-
formance using different number of hidden layers, number of
neurons per hidden layer, batch sizes and the activation func-
tions. The best performance is achieved when we use two hid-
den layers, batch size of 32 , sigmoid activation function in the
hidden layer.

It is essential to carefully analyze the number of hidden lay-
ers and the number of neurons in each of these layers. With
the increase in hidden layer numbers in the autoencoder, the
quality of latent representation also increases. However, it may
also lead to poor performance if not properly tuned. To find the
best-performing one, we have tested our model’s performance
using 1, 2, and 3 hidden layers. Figure 8 illustrates the exper-
imental result for both CIC-IDS2017 and NSL-KDD datasets.

11

1 2 3
No of Hidden Layer

0.895

0.900

0.905

0.910

0.915

0.920

Ac
cu

ra
cy

(a) CIC-IDS2017 Dataset

1 2 3
No of Hidden Layer

0.930

0.935

0.940

0.945

0.950

0.955

Ac
cu

ra
cy

(b) NSL-KDD Dataset

Figure 8: The result of Accuracy change as hidden layer changes

8-4 32-16 64-32
Hidden Neuron Size

0.904

0.906

0.908

0.910

0.912

0.914

0.916

0.918

0.920

Ac
cu

ra
cy

(a) CIC-IDS2017 Dataset

30-15 60-30 80-40
Hidden Neuron Size

0.950

0.951

0.952

0.953

0.954

0.955

0.956

0.957

0.958

Ac
cu

ra
cy

(b) NSL-KDD Dataset

Figure 9: The result of Accuracy change as hidden neuron size changes

The model architecture with two hidden layers slightly outper-
forms the model with one hidden layer, which tends to decrease
significantly when three hidden layers are used.

Typically, the hidden layer of an autoencoder contains fewer
neurons than the input and output layers, creating a bottleneck
and forcing the network to learn a higher-level representation
of the input. Using too few or too many neurons in the hidden
layers may result in performance degradation. We have exper-
imented with our model’s performance containing two hidden
layers, with different combinations of neuron sizes for each hid-
den layer. Each hidden layer in the encoder is set to be half
the size of the layer before it. For the NSL-KDD dataset, we
have experimented with ”30-15”, ”60-30”, and ”80-40,” where
the first one denotes the first hidden layer’s neuron size and the
second one denotes the latent/code layer’s neuron size. For the
CIC-IDS2017 data, we have tested with ”8-4”, ”32-16”, and
”64-32”. We discovered that changing the neuron size in the
latent layer affects the performance of our model. Figure 9a
presents the results of our experiments when the CIC-IDS2017
data are employed. This figure shows that model performance
decreases using only four neurons (“8-4”) in the latent layer.
Again, it also gives less accuracy while using 32 neurons (“64-
32”). The best result is observed when we choose “32-16” with
the code layer’s size containing 16 neurons. Similarly, in Figure
9b, we can see that using 30 neurons in our model’s latent layer

outperforms the others with 15 and 40. Hence, we have selected
the hidden neuron sizes showing better accuracy results.

Batch size, which determines how many samples must be
processed before the internal model parameters are updated, is
another crucial hyperparameter in deep learning model train-
ing. We assessed our model’s performance with different batch
sizes of 32, 64, 128, 256, and 512 on the CIC-IDS2017 and
NSL-KDD datasets, as shown in Figure 10. According to the
graphs, our model’s performance tends to decline as the batch
size grows. This observation is because learners’ ability to gen-
eralize declines as the number of batches increases [40]. The
term ”generalization” describes a model’s capacity to respond
to and perform when presented with unknown data. Hence, we
have chosen 32 as our model’s batch size.

We experimented with several non-linear activation func-
tions, such as tanh, sigmoid, and ReLU (Rectified Linear Unit),
to find the best-performing activation function in the hidden
layer. Both the NSL-KDD and CIC-IDS2017 datasets show the
best performance results with the sigmoid function, as shown
in Figure 11.

5.5. Experimental Results

We compared our model with some of the most well-known
deep learning models, Basic AE, Variational AE, and LSTM
AE, to evaluate our proposed model for each of chosen datasets.

12

32 64 128 256 512
Batch Size

0.890

0.895

0.900

0.905

0.910

0.915

0.920

Ac
cu

ra
cy

(a) CIC-IDS2017 Dataset

32 64 128 256 512
Batch Size

0.930

0.935

0.940

0.945

0.950

0.955

Ac
cu

ra
cy

(b) NSL-KDD Dataset

Figure 10: The result of Accuracy change as batch size changes

sigmoid tanh relu
Activation Function

0.913

0.914

0.915

0.916

0.917

0.918

0.919

Ac
cu

ra
cy

(a) CIC-IDS2017 Dataset

sigmoid tanh relu
Activation Function

0.950

0.952

0.954

0.956

0.958

Ac
cu

ra
cy

(b) NSL-KDD Dataset

Figure 11: The result of Accuracy change as activation function changes

Table 7: The Evaluation Metric Comparison for CIC-IDS2017 dataset. We
present the precision, recall, F-score and accuracy for the different deep learn-
ing algorithms

Algorithm Precision Recall F1-Score Accuracy(%)
LSTM AE 0.8977 0.8869 0.8862 88.69

VAE 0.9015 0.8873 0.8863 88.73
Our Approach 0.9246 0.9245 0.9245 92.45

Basic AE 0.8990 0.8984 0.8984 89.84

We analyzed all methods’ precision, recall, F-score, and accu-
racy values. Our model obtains an accuracy of 92.45% and
96.08% for the CIC-IDS2017 (DoS) and NSL-KDD datasets,
respectively. Table 7 and 8 represents the evaluation results
of our model for the CIC-IDS2017 (DoS) and NSL-KDD
datasets respectively along with other techniques. For the CIC-
DDoS2019 dataset, our accuracy for each attack classes is rang-
ing from 93.41% - 97.58% shown in Table 9. From the obtained
results, it is visible that our approach has the best performance
metrics in comparison to the other methods. Specifically, the
results show that the proposed method outperforms other meth-
ods significantly in the CIC-DDoS2019 dataset, where our ac-
curacy range is [93.41%− 97.58%] whereas the accuracy range
for LSTM AE [70.46%−95.40%], VAE [70.46%−90.20%], and
Basic AE [75.82% − 93.09%]. Additionaly, we illustrated the
comparative results between basic AE and our model (DCAE),
shown in Figures 12a, 12b, 12c.

Table 8: The Evaluation Metric Comparison for NSL-KDD dataset. We present
the precision, recall, F-score and accuracy for the different deep learning algo-
rithms

Algorithm Precision Recall F1-Score Accuracy(%)
LSTM AE 0.9322 0.9320 0.9320 93.20

VAE 0.9369 0.9368 0.9368 93.68
Our Approach 0.9610 0.9608 0.9608 96.08

Basic AE 0.9047 0.9045 0.9045 90.45

Table 9: The Evaluation Metric Comparison for CIC-DDoS2019 dataset. We
report the accuracy of the different deep learning algorithms

Algorithm LDAP UDP MSSQL PORTMAP SYN UDPLAG NETBIOS
LSTM AE 94.10 87.98 95.33 88.60 95.40 70.46 78.32

VAE 90.20 70.46 84.48 77.15 78.35 70.50 79.50
Our Approach 95.86 97.58 97.33 95.97 95.12 93.41 93.88

Basic AE 93.09 87.56 80.39 87.27 82.01 75.82 86.17

Figure 13 presents our method’s confusion matrix for NSL-
KDD and CIC-IDS2017 datasets. Figure 13a shows that our
method accurately detected 5523 true negatives and 5369 true
positives out of 11336 instances in NSL-KDD datasets. The
method could not correctly detect 444 cases, where 145 of them
were false positives and 299 false negatives. Figure 13b shows
that our method accurately detected 8428 true negatives and
8504 true positives out of 18314 instances in CIC-IDS2017
datasets. The method could not correctly detect 1382 cases,

13

LDAP UDP MSSQL PORTSCAN SYN UDPLAG NETBIOS

Dataset

0

20

40

60

80

100

A
c
c
u

ra
c
y
(%

)

AE

DCAE

(a) AE and DCAE performance comparison on different at-
tack dataset of CIC-DDoS2019 in terms of accuracy

Precision Recall F1-Score Accuracy

Metric

0

20

40

60

80

100

S
c

o
re

(%
)

AE

DCAE

(b) AE and DCAE performance comparison on NSL-KDD
dataset

Precision Recall F1-Score Accuracy

Metric

0

20

40

60

80

100

S
c

o
re

(%
)

AE

DCAE

(c) AE and DCAE performance comparison on CIC-IDS2017
dataset

Figure 12: AE and DCAE performance comparison on different attack datasets

0 1

0
1

True Neg
5523

48.72%

False Pos
145

1.28%

False Neg
299

2.64%

True Pos
5369

47.36%
1000

2000

3000

4000

5000

(a) Confusion Matrix of our proposed approach for NSL-KDD

0 1

0
1

True Neg
8428

46.02%

False Pos
729

3.98%

False Neg
653

3.57%

True Pos
8504

46.43%

1000

2000

3000

4000

5000

6000

7000

8000

(b) Confusion Matrix of our proposed approach for CIC-IDS2017

Figure 13: Confusion Matrix of the evaluation dataset of our proposed approach

where 729 of them were false positives and 653 false negatives.
We have also used the Receiver Operating Characteristic

(ROC) curve to show the efficacy of our model. The ROC
curve shows the relationship between two parameters: true and
false classes. The area under the ROC Curve (AUC) measures
how well a model can distinguish between classes. Figure 14a
shows that our model gives an AUC of 96.08 for the NSL-KDD
dataset, which means that our proposed model can separate
96.08% of positive and negative classes successfully. It gives
an AUC of 92.45 for the CIC-IDS2017(DoS) dataset, depicted
in Figure 14b.

6. Discussion and Future Work

Autoencoder-based techniques have proven to be valuable
tools for detecting Distributed Denial-of-Service (DDoS) at-
tacks in Intrusion Detection Systems. AE-based techniques
can identify deviations from normal behavior that may indi-
cate a DDoS attack by learning a low-dimensional represen-
tation of normal network behavior. Specifically, utilizing semi-
supervised learning helps us to detect new types of attacks that
were not present in the training data. Considering how alive are
the network attacks and easy to introduce new type of attacks,
addressing zero-day DDoS attacks are crucial for IDSs.

Besides the many advantages of AE-based techniques, it is
essential to understand their limitations. AE-based techniques
may also produce false alarms, particularly when the attack is
similar to normal network traffic. In the case of using nonopti-
mal hyperparameters of the AE-based techniques, the accuracy
can significantly drop. Therefore, fine-tuning the hyperparam-
eters of the AE is crucial for reducing false alarms. We con-
ducted several trials with different hyperparameter values in our
experiments to choose the optimal one. Our results showed that
our model’s performance was significantly improved by using
the optimal hyperparameters. This highlights the importance of
carefully choosing hyperparameters in deep learning models.

The significance of choosing the optimal anomaly threshold
has been analyzed in this work by examining the reconstruction
loss distribution of normal and anomalous data. We performed
several iterations using the validation dataset to select the opti-
mal threshold and observed the model’s accuracy with different
threshold values. This highlights the importance of using a dy-
namic threshold selection method, as the fixed threshold might
not be effective for different datasets.

We plan to apply our current model to other benchmark
datasets in our future work. Moreover, we intend to expand
the binary classification problem into a multi-class classifica-
tion problem.

14

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

AUC = 0.9608

AUC & ROC Curve

(a) Receiver Operating Curve (ROC) of our proposed approach for NSL-KDD

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AUC = 0.9245

AUC & ROC Curve

(b) Receiver Operating Curve (ROC) of our proposed approach for CIC-IDS2017

Figure 14: Receiver Operating Curve (ROC) of our proposed approach

7. Conclusions

Traditional Intrusion Detection Systems fail to detect sophis-
ticated attacks with unexpected patterns; hence detection of
these attacks has become one of the most challenging prob-
lems on the Internet. In this paper, we presented a new Deep
Learning based Intrusion Detection model, explicitly focusing
on the Denial of Service (DoS) and Distributed Denial of Ser-
vice (DDoS) attacks. Our proposed Deep Learning framework
is based on a contractive-autoencoder that can efficiently model
the normal traffic data. It detects the anomaly from the dataset
using a stochastic threshold strategy based on the reconstruction
error. The performance of the proposed method is evaluated by
using three benchmark datasets, NSL-KDD, CIC-IDS2017, and
CIC-DDoS2019. Our results show that the proposed method
can achieve up to 97.58% accuracy in detecting anomalies.

References

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ”Learning representa-
tions by back-propagating errors”, Nature 323, pp. 533-536, 1986

[2] Intrusion Detection Evaluation Dataset (CIC-IDS2017), https://www.
unb.ca/cic/datasets/ids-2017.html

[3] NSL-KDD dataset, https://www.unb.ca/cic/datasets/nsl.html
[4] KDD Cup 1999 Data, https://kdd.ics.uci.edu/databases/kddc

up99/kddcup99.html

[5] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, ”A detailed anal-
ysis of the KDD CUP 99 data set”, IEEE Symposium on Computational
Intelligence for Security and Defense Applications, IEEE, 2009

[6] H. Choim, M. Kim, G. Lee, and W. Kim, ”Unsupervised learning ap-
proach for network intrusion detection system using autoencoders”, The
Journal of Supercomputing, vol 75, no 9, pp. 5597-5621, 2019

[7] A. Y. Nur and M. E. Tozal, ”Record Route IP Traceback: Combating DoS
Attacks and the Variants”, Computers & Security vol 72, pp 13-25, 2018

[8] H. Hindy, R. Atkinson, C. Tachtatzis, J. Colin, E. Bayne, and X.
Bellekens, ”Utilising deep learning techniques for effective zero-day at-
tack detection”, Electronics vol 9 no 10, 2020

[9] DDoS Evaluation Dataset (CIC-DDoS2019), https://www.unb.ca/c
ic/datasets/ddos-2019.html

[10] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, ”Devel-
oping realistic distributed denial of service (DDoS) attack dataset and
taxonomy”, International Carnahan Conference on Security Technology
(ICCST), IEEE, 2019

[11] A. Y. Nur, ”Combating DDoS Attacks with Fair Rate Throttling”, IEEE
International Systems Conference (SYSCON), 2021

[12] F. Farahnakian and J. Heikkonen, ”A deep auto-encoder based approach
for intrusion detection system”, International Conference on Advanced
Communication Technology, IEEE, 2018

[13] BBC News, ”Amazon ’thwarts largest ever DDoS cyber-attack’”, Jun 18,
2020, retrieved Sep 27, 2022, https://www.bbc.com/news/technol
ogy-53093611

[14] A. Y. Nur and M. E. Tozal. ”Single Packet AS Traceback against DoS
Attacks”, IEEE SYSCON, 2021

[15] M. S. Elsayed, N. Le-Khac, S. Dev, A. D. Jurcut, ”Network anomaly
detection using LSTM based autoencoder”, ACM Symposium on QoS
and Security for Wireless and Mobile Networks, 2020.

[16] Y. Ding and Y. Zhai, ”Intrusion detection system for NSL-KDD dataset
using convolutional neural networks”, International Conference on Com-
puter Science and Artificial Intelligence, 2018

[17] C. Yin, Y. Zhu, J. Fei, and X. He, ”A deep learning approach for intru-
sion detection using recurrent neural networks”, IEEE Access, vol 5, pp.
21954-21961, 2017

[18] K. Yang, J. Zhang, Y. Xu, and J. Chao, ”DDoS attacks detection with
autoencoder”, IEEE/IFIP Network Operations and Management Sympo-
sium, IEEE, 2020

[19] S. T. Zargar, J. Joshi, and D. Tipper, ”A Survey of Defense Mechanisms
Against Distributed Denial of Service (DDoS) Flooding Attacks.” IEEE
Communications Surveys & Tutorials, 2013

[20] G. Carl, G. Kesidis, R. R. Brooks, and R. Suresh, ”Denial-of-service
attack-detection techniques,” IEEE Internet Computing, vol. 10, pp. 82-
89, 2006

[21] T. Peng, C. Leckie, and K. Ramamohanarao, ”Survey of Network-Based
Defense Mechanisms Countering the DoS and DDoS Problems”, ACM
Computing Surveys, 2007

[22] M. S. Elsayed, N. Le-Khac, S. Dev, A. D. Jurcut, ”DDoSNet: A deep-
learning model for detecting network attacks”, International Symposium
on ”A World of Wireless, Mobile and Multimedia Networks” (WoW-
MoM), IEEE, 2020

[23] J. P. Anderson, ”Computer security threat monitoring and surveillance”,
Technical Report, James P. Anderson Company, 1980

[24] M. S. Elsayed, N. Le-Khac, S. Dev, A. D. Jurcut, ”Detecting abnormal
traffic in large-scale networks”, International Symposium on Networks,
Computers and Communications (ISNCC), IEEE, 2020

[25] B. Min, J. Yoo, S. Kim, D. Shin, and D. Shin, ”Network anomaly detec-
tion using memory-augmented deep autoencoder”, IEEE Access, vol 9,
pp. 104695-104706, 2021

[26] CICFlowMeter project, https://github.com/ISCX/CICFlowMeter
[27] X. Yuan, C. Li, and X. Li, ”DeepDefense: Identifying DDoS Attack

via Deep Learning”, IEEE International Conference on Smart Comput-
ing (SMARTCOMP), IEEE, 2017

[28] R. C. Aygun and A. G. Yavuz, ”Network anomaly detection with stochas-
tically improved autoencoder based models”, International Conference on
Cyber Security and Cloud Computing, IEEE, 2017

[29] L. Van der Maaten and G. Hinton, ”Visualizing data using t-SNE”, Jour-
nal of machine learning research, vol 9, no 11, 2008

15

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/nsl.html
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://www.bbc.com/news/technology-53093611
https://www.bbc.com/news/technology-53093611
https://github.com/ISCX/CICFlowMeter

[30] M. S. Elsayed, N. Le-Khac, S. Dev, A. D. Jurcut, ”Machine-learning tech-
niques for detecting attacks in SDN”, International Conference on Com-
puter Science and Network Technology, IEEE, 2019

[31] W. Wang, X. Du, D. Shan, R. Qin, and N. Wang, ”Cloud intrusion detec-
tion method based on stacked contractive auto-encoder and support vector
machine.” IEEE transactions on cloud computing (2020).

[32] J. Kim, J. Kim, H. Kim, M. Shim, and E. Choi, ”CNN-based net-
work intrusion detection against denial-of-service attacks.” Electronics
9.6 (2020): 916.

[33] S. Aktar and A. Y. Nur, ”Hash Based AS Traceback against DoS Attack”,
International Conference on Advanced Communication Technologies and
Networking (CommNet), IEEE, 2021

[34] Google Cloud, How Google Cloud blocked the largest Layer 7 DDoS
attack at 46 million rps, retrieved September 27 2022, https://clou
d.google.com/blog/products/identity-security/how-googl

e-cloud-blocked-largest-layer-7-ddos-attack-at-46-mil

lion-rps

[35] Kaspersky Lab, DDoS attacks hit a record high in Q4 2021, retrieved
September 27 2022, https://www.kaspersky.com/about/press-r
eleases/2022_ddos-attacks-hit-a-record-high-in-q4-2021

[36] M. T. Gil and M. Poletto, ”MULTOPS: A Data-Structure for Bandwidth
Attack Detection”, USENIX Security Symposium, 2001

[37] A. Y. Nur, ”Efficient Probabilistic Packet Marking for AS Traceback”,
IEEE International Symposium on Networks, Computers and Communi-
cations (ISNCC), 2021

[38] Deriving Contractive Autoencoder and Implementing it in Keras - http
s://agustinus.kristia.de/techblog/2016/12/05/contracti

ve-autoencoder/

[39] Kaspersky Lab - Retrieved 10/09/2022 - https://usa.kaspersky.co
m/about/pressreleases/2018ddos-breach-costs-rise-to-o

ver-2m-for-enterprises-findskaspersky-lab-report

[40] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T.
P. (2016). On large-batch training for deep learning: Generalization gap

and sharp minima. arXiv preprint arXiv:1609.04836
[41] R. Chalapathy and S. Chawla, ”Deep learning for anomaly detection: A

survey”, arXiv preprint arXiv:1901.03407, 2019
[42] M. F. Balın, A. Abid, and J. Zou, ”Concrete Autoencoders: Differentiable

Feature Selection and Reconstruction”, International Conference on Ma-
chine Learning, 2019

[43] H. Arami, A. A. Joshi, J. Li, S. Aydore, and R. M. Leahy, ”A Robust Vari-
ational Autoencoder Using Beta Divergence”, Knowledge-Based Sys-
tems, 238 (2022): 107886

[44] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A.
Markham, ”Learning semantic segmentation of large-scale point clouds
with random sampling”, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 44.11 (2021): 8338-8354

[45] H. Akrami, A. A. Joshi, S. Aydore, and R. M. Leahy, ”Addressing vari-
ance shrinkage in variational autoencoders using quantile regression”,
arXiv preprint arXiv:2010.09042 (2020)

Sharmin Aktar is a Ph.D. candidate in the Department of
Computer Science at the University of New Orleans. She re-
ceived her B.Sc. degree in Computer Science and Engineer-
ing from Bangladesh University of Engineering and Technol-
ogy (BUET) in 2016. Her research interests focus on Network
Security and Machine Learning.
Abdullah Yasin Nur is an Assistant Professor in the Depart-
ment of Computer Science at the University of New Orleans.
He received his Ph.D. degree in Computer Science from the
University of Louisiana at Lafayette in 2018. His research inter-
ests are Network Measurement and Analysis, Network Topol-
ogy Discovering and Modeling, Network Security, and Graph
Theory.

16

https://cloud.google.com/blog/products/identity-security/how-google-cloud-blocked-largest-layer-7-ddos-attack-at-46-million-rps
https://cloud.google.com/blog/products/identity-security/how-google-cloud-blocked-largest-layer-7-ddos-attack-at-46-million-rps
https://cloud.google.com/blog/products/identity-security/how-google-cloud-blocked-largest-layer-7-ddos-attack-at-46-million-rps
https://cloud.google.com/blog/products/identity-security/how-google-cloud-blocked-largest-layer-7-ddos-attack-at-46-million-rps
https://www.kaspersky.com/about/press-releases/2022_ddos-attacks-hit-a-record-high-in-q4-2021
https://www.kaspersky.com/about/press-releases/2022_ddos-attacks-hit-a-record-high-in-q4-2021
https://agustinus.kristia.de/techblog/2016/12/05/contractive-autoencoder/
https://agustinus.kristia.de/techblog/2016/12/05/contractive-autoencoder/
https://agustinus.kristia.de/techblog/2016/12/05/contractive-autoencoder/
https://usa.kaspersky.com/about/pressreleases/2018 ddos-breach-costs-rise-to-over-2m-for-enterprises-findskaspersky-lab-report
https://usa.kaspersky.com/about/pressreleases/2018 ddos-breach-costs-rise-to-over-2m-for-enterprises-findskaspersky-lab-report
https://usa.kaspersky.com/about/pressreleases/2018 ddos-breach-costs-rise-to-over-2m-for-enterprises-findskaspersky-lab-report

	Introduction
	Background and Motivation
	Related Work
	Methodology
	Autoencoder
	Contractive Autoencoder
	Our Model

	Experiments
	Datasets
	Dataset Pre-processing
	Evaluation Metrics
	Experimental Setup
	Experimental Results

	Discussion and Future Work
	Conclusions

