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Abstract—Distributed Denial of Service (DDoS) attacks are
among the most harmful cyberattack types in the Internet.
The main goal of a DDoS defense mechanism is to reduce
the attack’s effect as close as possible to their sources to
prevent malicious traffic in the Internet. In this work, we
examine the DDoS attacks as a rate management and congestion
control problem and propose a collaborative fair rate throttling
mechanism to combat DDoS attacks. Additionally, we propose
anomaly detection mechanisms to detect attacks at the victim site,
early attack detection mechanisms by intermediate Autonomous
Systems (ASes), and feedback mechanisms between ASes to
achieve distributed defense against DDoS attacks. To reduce
additional vulnerabilities for the feedback mechanism, we use
a secure, private, and authenticated communication channel
between AS monitors to control the process. Our mathematical
model presents proactive resource management, where the victim
site sends rate adjustment requests to upstream routers. We
conducted several experiments using a real-world dataset to
demonstrate the efficiency of our approach under DDoS attacks.
Our results show that the proposed method can significantly
reduce the impact of DDoS attacks with minimal overhead to
routers. Moreover, the proposed anomaly detection techniques
can help ASes to detect possible attacks and early attack detection
by intermediate ASes.

Index Terms—DoS, DDoS, Rate Adjustment, Router Throttle

I. INTRODUCTION

The Internet is designed to forward packets with minimal
intervention, including malicious packets. Cybercriminals take
advantage of this freedom in the architecture to deploy cyberat-
tacks towards various targets. Cyberattacks can be defined as
malicious and deliberate attempts to breach the information
system, computer networks, or infrastructures that use the
Internet as a communication medium. Usually, attackers seek
some benefit from disrupting the victim’s network, including
financial gain, reputation, political reasons, or cyberwarfare.
Denial-of-Service (DoS) attack and its variants, such as Dis-
tributed Denial-of-Service attacks (DDoS), are one of the
most hazardous attack types in the Internet. In DoS attacks,
perpetrators aim to exhaust a system to make it unavailable
to provide services to intended users. Typically, the attack
involves flooding a target with an excessive amount of traffic
to overload the system to disrupt its services. DDoS attack
is a more severe version of the DoS attack, where a large
number of hosts simultaneously attack a target. In DDoS, the
perpetrators often leverage the attack effect by compromising
multiple hosts through a common vulnerability and use all
compromised hosts to flood the victim site.

Many jurisdictions have laws considering that DoS attacks
are illegal. For example, the Computer Fraud and Abuse Act
(CFAA) in the US indicates that DoS attacks perpetrators may
be charged legal offenses at the federal level with penalties
that include imprisonment and fine penalty for any damage to
the victim site. In September 2012, a large-scale DDoS attack
targeted the websites of several US banks, including JPMorgan
Chase, Bank of America, and SunTrust Banks. The attack was
successful and disrupted their services for extended periods of
time. In December 2015, perpetrators targeted the BBC and
took its on-demand TV service, iPlayer services, and radio
services down for several hours. In October 2016, a large-scale
DDoS attack targeted the DNS infrastructure of Dyn, which
caused major Internet platforms unaccessible, including Ama-
zon, Netflix, Twitter, and the New York Times. In April 2018,
attackers targeted GitHub with 1.35 Tbps, which corresponds
to 126.9 million packets per second. Most recently, Amazon
reported a world record DDoS attack sustaining a 2.3 Tbps to
their Amazon Web Services.

Unlike most cyberattacks, DDoS attacks are usually not
caused by a vulnerability of the victim site’s network. Under
standard operation time, TCP-like congestion control usually
provides a fair usage of the available resources in the victim
site. However, the DDoS attacks do not obey the congestion
rules and send packets at a drastic rate. Also, filtering the
attack traffic within the Autonomous System (AS) network
is not a valid solution because it creates congestion in the
incoming links. Moreover, the rogue traffic also affects inter-
mediate ASes, which carry the attack traffic. These ASes are
unintentional victims. Hence, the main goal of a DDoS defense
mechanism is to reduce the attack’s effect as close as possible
to their sources to prevent malicious traffic in the Internet.

We have communicated with several Internet Service
Providers (ISP) giving service worldwide regarding the mon-
itoring and filtering the rogue traffic within their network.
ISPs have several motivations to reduce malicious activities
inside their network. Some of the motivations are reputation,
economic incentives, resource management, and government
regulations. Major ISPs tend to monitor the internal traffic and
drop the malicious packet before relaying to the next AS for
reputation. However, they need a clear sign that the packet is
malicious. Most of the DDoS packets act like regular traffic
packets with having a proper header, request, and option field.
Therefore, it is hard to analyze the type of the packet without
the victim site’s feedback. ISPs avoid blocking the source



without a strong reason because blocking their subscribers who
are intended users would be a reputation problem for the ISPs.
Next, economic incentives have an essential motivation for
ISPs to reduce malicious traffic. Customer-to-Provider (c2p)
is one of the popular business relations between ASes. In a
c2p relation, the provider AS provides global reachability to its
customer AS. In return, the customer pays to the provider for
the traffic exchanged between them. By that means, ISPs pay
money to other ISPs to relay the traffic, which is not desirable
in an attack case because it is a waste of money. Attack traffic
travels inside of an ISP use the bandwidth of the internal links.
Since the bandwidth is limited, ISPs do not want to waste their
bandwidth on malicious traffic, which brings another essential
motivation, resource management. Finally, government regu-
lations encourage the ISPs to reduce the botnet activity within
their network (e.g., Federal Communications Commission US
Anti-Bot Code of Conduct).

In this paper, we propose a proactive resource management
method via rate throttling. Additionally, we propose attack
detection mechanisms at the victim site, early attack detection
mechanisms, and feedback mechanisms between ASes to
achieve distributed defense against DDoS attacks. We use
Bollinger bands, Stochastic Oscillators, trusted IP address con-
trol, passive IP set control, and passive AS set control to detect
traffic anomalies between two ASes to detect possible DDoS
attacks. Each AS on the path between attackers and the victim
site analyzes the traffic pattern. In case an AS detects a traffic
anomaly, e.g., a rapid increase in traffic flow between two
hosts, it sends a question message to the destination site to ask
if it is under attack. The feedback mechanism helps ASes to
prevent incorrect filtration. ASes which have trust relations can
discard the attack packets directly without additional concerns.
However, not all ASes have trust relations, which can create
additional problems to filter out the entire traffic of a customer
AS without a clear sign that it is an attacker. Therefore, we
provide a new rate management technique to throttle possible
attack traffic by using feedbacks from upstream ASes.

We conducted several experiments using a real-world
dataset to demonstrate the efficiency of our approach under
DDoS attacks. Our results show that our anomaly detection
techniques help ASes to detect possible attacks and early
attack detection by intermediate ASes. Additionally, our pro-
posed rate throttling algorithm provides a fair rate adjustment
to protect the destination. Our approach complies with the
current IP protocol and does not require any changes in
the protocol itself. Similar to other defense mechanisms, the
proposed approach in this study requires support from router
vendors and Internet Service Providers. The experimental
results show that our approach can be very effective against
DoS and DDoS attacks with a small overhead on the routers.

The rest of the paper is organized as follows. In Section II,
we present the related work. We explain the details of our
approach in Section III. Section IV demonstrates our experi-
mental results. Finally, we conclude the paper in Section V.

II. RELATED WORK

Researchers have proposed several DoS defense mecha-
nisms over two decades [9]. We classify the defense mech-
anisms into three categories: attack detection, attack source
identification, and attack reaction.

The main approach of attack detection techniques is to
detect the DoS attacks by monitoring the incoming traffic.
Detection techniques usually identify DoS attacks in case
of an anomaly from changes in the observed traffic pattern.
MULTOPS [5] is a data-structure that assumes that the packet
rate between two hosts should be proportional during normal
operations. In case of a significant change in the packet rate
from one side of the flow indicates a volumetric DDoS attack.
Since many hosts simultaneously attack a target in DDoS
attacks, Peng et al. [6] assume an extreme increase in the
set of new source IP addresses indicates an attack.

The second category is attack source identification. Attack-
ers in the Internet can use IP spoofing to hide their real IP
addresses. Therefore, if the victim site blocks the suspicious
IP addresses, it may accidentally block one of its legitimate
users. One of the solutions to prevent this problem is to infer
the path between attackers and the destination site, which
is called IP traceback [7, 8]. One of the earliest works can
be credited to Savage et al. [7]. They propose the Fragment
Marking Scheme, which uses the IP ID field in the IP packet
header to probabilistically mark the partial path information.
Once the victim site receives enough number of packets, it can
construct the forward paths between attackers toward itself.
Yaar et al. [3] use more space for encoding to decrease the
number of required packets and reduce false positives. In our
previous work, RRTrace [1], we propose a probabilistic packet
marking scheme by exploiting the Record Route feature of the
IP protocol. In RRTrace, a router inserts one of its IP addresses
in the Record Route (RR) options field of a packet as long as
there is room. In case there is no room in the RR field, the
router rewrites the field with probability p or skips rewriting
with probability 1 − p. The victim site starts from an empty
graph and gradually builds up the graph by incorporating the
sub-paths from the received packets.

Attack reaction techniques involve resource management
to mitigate the impact of DoS attacks in a timely fashion.
High profile service providers, such as Microsoft and Yahoo,
dynamically increase service and network resources during
attacks [4]. The increasing popularity of cloud services brought
new approaches to DoS defense [10, 11]. Cloud-based security
companies such as Cloudflare and Imperva provide a cloud
layer between their customers, which allows them to monitor
and analyze traffic patterns in real-time. When a DDoS attack
is detected by monitoring systems, they apply a filtering tech-
nique and drop the malicious traffic without forwarding to their
customers. Mahajan et al. [16] propose an aggregate-based
congestion control mechanism, which suggests monitoring and
controlling high bandwidth aggregates at routers. An aggregate
corresponds to a collection of packets sharing a common
property such as source address, destination address, proto-



col type, or application type. The mechanism identifies the
aggregates causing congestion and rate limit the aggregates at
the local or upstream routers. Yau et al. [2] propose a feedback
control scheme on the router to throttle the traffic flow with
max-min fairness. The proposed scheme aims to proactively
limit the traffic rate before it reaches the server. Malialis
and Kudenko [17] introduce a decentralized approach, where
upstream routers independently deploy multiple reinforcement
learning agents. Upstream routers use multiagents to learn
throttle towards the victim site. Xia et al. [18] propose a cen-
tralized router throttling method via reinforcement learning.
They apply a deep deterministic policy gradient network for
each router to reduce the communication cost.

In this work, we propose a new collaborative rate manage-
ment method to combat volumetric DDoS attacks. Our method
provides a trust-based and untrust-based collaboration scheme
for ASes. In addition, we provide additional techniques for
anomaly detection to discover DDoS attacks as close as to
the attacker site. We provide a mathematical methodology
for fair rate throttling and anomaly detection. Additionally,
we introduce message types to exchange requests between
ASes safely. Our results show that the proposed techniques
require less overhead to routers and filtering systems of ASes.
Moreover, it can be very effective for combating DDoS attacks
and protect the destination site.

III. METHODOLOGY

The ultimate goal of the defense mechanism is to filter out
the attack packets as close as the source. In a DDoS attack
case, there can be thousands of attackers from thousands of
ASes. ISPs avoid blocking the source without a strong reason
because blocking their subscribers who are intended users
would be a reputation problem. It is hard to detect the attack
without the victim site’s feedback. In this work, we propose
a collaborative rate management approach to combat DDoS
attacks. In case of an attack, the victim site sends rate throttling
requests to its upstream ASes to reduce the attacking rate.
Additionally, the upstream ASes monitor possible anomalies
to early detect the possible attacks and communicate with
possible victims to solve the problem as soon as possible.

ASes must fully control the request and reply messaging
process to avoid additional vulnerabilities. For example, per-
petrators can send lots of filtering requests to another AS,
which is a different and new type of attack that we want to
avoid. In order to achieve a more robust system, the control
process is held by specific control servers deployed by each
AS. Note that, most of the ASes already has these type of
servers to monitor their network traffic and Quality-of-Service
(QoS) parameter. Furthermore, network admins use traffic
mirroring or tapping techniques to analyze the traffic within
the internal network, e.g., NetFlow and IPFIX [19]. Therefore,
the proposed method does not require additional cost to the
ASes. The server nodes construct a secure, private, and authen-
ticated communication channel between them. We use Public
Key Infrastructure (PKI) framework for authentication. The
framework contains two PKIs where the first one is employed

for IP prefix attestation and the second one is for AS number
attestation between end-hosts. The communication routing is
over the path chosen by the Border Gateway Protocol (BGP),
which is already a defacto intra-AS routing protocol. Next,
each AS assigns a static IP address to its control servers and
broadcasts the IP addresses to upstream ASes. Control servers
hold the ”AS-ServerIP” pair in their database to be able to
exchange messages. When a victim sends an ”I am under
attack” (See Section III-D for details) request to its AS’es
control server, the server evaluates the validity of the claim.
If the claim is valid and the victim site is under attack, the
AS sends a filtering request to each ASes’ control server on
the path. This approach helps for partial deployment cases
because some of the ASes in the Internet may not want to
collaborate. If the attackers’ AS are not collaborative, the filter
is deployed at the closest collaborative AS to the attacker. The
request messages are specific for the control servers. ASes’
egress routers drop the outgoing request packets and block the
originator of the packet if the source is not a control server
for removing the possible vulnerability.

The validity of a request is decided in two-folds, which
are the deterministic and non-deterministic approaches. In
the deterministic approach, ASes assume that the source is
an attacker and drop all incoming packets from the source.
The deterministic approach is for the ISPs, which have trust
relations. Levy et al. [12] reported a collaboration between two
major ISPs in the US, CenturyLink and AT&T, during DDoS
attacks. This observation shows that ISPs are willing to col-
laborate to defeat the DDoS attacks. In the non-deterministic
approach, ASes check the monitoring results to analyze the
possible attackers’ activity. In case the traffic sent by the source
is above a threshold, the AS applies a rate-throttling to the
source instead of filtering out all traffic.

A. Anomaly Detection

Anomaly detection is a significant part of DDoS defense.
In order to make a filtering request, the victim site is required
to distinguish malicious traffic and regular traffic. We identify
DDoS attacks by analyzing anomalies in the observed traf-
fic pattern by monitoring incoming traffic. We propose the
following techniques for anomaly detection. Note that, the
upstream ASes use the first two methods for possible early
attack detection, whereas the victim site uses all five methods.
Bollinger Bands: It is a prevalent statistical approach to detect
overbought and oversold stocks in the stock market. A similar
approach is used for computing the TCP’s retransmission timer
timeout calculations [15]. We apply it to determine over packet
and under packet sending cases. Gil et al. [5] proposed that
the packet rate from Host A to Host B should be proportional
to the packet rate from Host B to Host A during normal
operations. Therefore, a dramatic change in the packet rate
from one side of the flow indicates a volumetric DDoS attack.
Bollinger bands generates a band at a standard deviation level
above and below a moving average of the current rate. We
assume that during a regular operation, the current flow rate
should be within the band. In case the rate is out of the band, it



(a) Upstream ASes

(b) Victim AS
Fig. 1: Conceptual Architecture for Upstream and Victim ASes

shows an anomaly of the current incoming traffic. We present
the mathematical model for bollinger bands in Section III-C.
Stochastic Oscillator: Similar to bollinger bands, stochastic
oscillator is a popular statistical momentum indicator for
stocks. The stochastic oscillator presents the current rate in
relation to the high and low range of the rate over a period
of time. In case of the current rate coming from an AS close
to the high range, the AS can be considered as a possible
attacker. We present the mathematical model for the stochastic
oscillator in Section III-C.
Trusted IP Address Control: User profiling is a common
anomaly detection technique in cyberspace [20, 21]. The main
goal for user profiling is to detect atypical behavior activities
by analyzing the actions triggered by users. It is easy to create
a profile for an intended user since the behavioral act would be
similar during regular times, e.g., access the destination site
with specific requests and activity times. Based on the user
profiles, the victim site can crate the intended user IP address
set and analyze the suspicious traffic coming from specific IP
addresses via their profiles.
Passive IP Set Control: Since many hosts simultaneously
attack a target in DDoS attacks, Peng et al. [6] assume that
an extreme increase in the set of new source IP addresses
indicates an attack. We also use this assumption to analyze
possible volumetric DDoS attacks. We use the trusted IP
address control technique explained above to eliminate the
possible intended users, and extra analyze the unrecognized
IP sources.
Passive AS Set Control: Similar to the previous assumption in
passive IP set control, we assume that the number of different
ASes that send traffic will be larger during DDoS attacks. By
using this assumption, we also create AS profiling to analyze
possible suspicious activities.

B. System Architecture

Figure 1 presents the conceptual architecture for upstream
ASes and victim ASes. Upstream ASes between the attacker
AS and the victim AS have two components, as represented in
Figure 1a. The first component is early attack detection by an-
alyzing the incoming traffic via anomaly detection techniques.
We use bollinger bands and stochastic oscillator for that
purpose. In case of anomaly detection, the upstream AS sends
a query to the possible victim AS to ensure that the victim is
under attack. Also, the upstream ASes’ control servers listen
to the other ASes for possible filtering requests. The second
component of the defense mechanism is to respond to attacks.
Whenever the upstream AS receives a request from another
AS, it checks if the incoming request comes from a trusted
AS or a regular AS. In case the filtering request comes from a
trusted AS, the AS deploys a deterministic filtering mechanism
to filter out traffic coming from the attacker AS. For other
requests, the upstream AS deploys a fair rate throttling to
reduce the amount of possible attack packets.

Figure 1b presents the conceptual architecture for victim
AS. The victim site needs to analyze the packet traffics to
detect possible attacks. Also, it needs to respond to queries



Fig. 2: Simplified Router Architecture with Rate Limiter

coming from upstream ASes for early attack detection. For
anomaly detection, we use five different methods; bollinger
bands, stochastic oscillator, trusted IP address control, passive
IP set control, and passive AS set control. The victim AS is
responsible for sending filtering requests to upstream ASes
with a calculated throttling rate. Additionally, the victim AS
keeps previously sent filtering requests logs. The reasons for
maintaining logs are to resend a filtering request in case of
timeout, send a new rate adjustment request in case of the
increased level of attack, and send a remove filter request if
the attack is no longer exists.

Figure 2 presents a partial view of a router that handles
throttling requests from the victim site and applies rate-
limiting for the attack sources. If an AS does not receive any
throttling request, e.g., no attack case, the router transmits the
data without applying specific filtering. However, when the
AS receives a request from the victim, which specifies the
attacker AS number, the router applies rate limiting based on
the mathematical model presented in Section III-C.

C. Mathematical Model for Rate Throttling

In this part, we provide our mathematical approach for the
fair rate throttling mechanism.
Assumptions:
• G(V,E) is AS level graph where V presents ASes and

E presents the connection between ASes. A subset of
the graph G′(V ′, E′, D) presents a directed acyclic graph
with a root D as a victim site where G′ ⊂ G.

• The function R(i→j)(t) presents the rate between ASi

and ASj in time t.
• The function R(i→D)(t) presents the total rate from ASi

to the victim site in time t.
• RDcur is defined as the destination’s current total rate,
RDreg is the destination’s operation rate during normal
time, RDlim

is the load limit rate of the destination,
and RDmax

is the maximum rate that the destination can
operate.

• Our goal is to keep the destination under RDmax
and close

to RDlim
. Therefore, the throttling rate (ϕ) and functions

(f ) are defined as equations 1 and 2.
The throttling rate ϕ is in the range of [91, 1], where the

value close to -1 presents under-rate and 1 presents over-rate.
In case the value of RDcur

< RDlim
, the ϕ value will be

negative, which presents no throttling required. Additionally,
supposing the destination sent a filtering request previously,

ϕ =


RDcur −RDlim

RDmax −RDlim

if RDcur > 0

−1 if RDcur = 0

(1)

f =


HardThrottle if RDcur ≈ RDmax

SoftThrottle if RDcur ' RDlim

NoThrottle if RDcur is [RDreg , RDlim ]

Relaxation if RDcur < RDreg

(2)

∆R(i→D) = 1 − ϕ

2

R(i→D)(t) = R(i→D)(t− 1) × (1 − ϕ

2
) (3)

the negative value generates a new request to adjust the packet
rate, e.g., the attack is ended and no need more further filtering.
If the value of RDcur

> RDlim
, the ϕ value will be positive,

and the destination requests a throttling from upstream ASes.
The throttle model is fair because whenever the current rate is
greater than but close to RDlim

, ϕ value is close to 0. However,
ϕ is close to 1 once the current rate gets closer to RDmax

.
Equation 3 presents the rate adjustment. If the destination

generates a throttling signal, it sends requests to upstream
ASes to adjust the rate. In case the current rate is close to
the maximum rate that the destination can operate, it requests
a rate adjustment for half the current rate (HardThrottle). In
case the current rate is smaller than the load limit, it requests
a rate adjustment to soften the rate throttling (Relaxation).

Gil et al. [5] proposed that the packet rate between two hosts
should be proportional during normal operations. Therefore, a
dramatic change in the packet rate from one side of the flow
indicates a volumetric DDoS attack. We use this assumption
to create our anomaly detection approach. We define the
rate function as 30 days exponential moving average (EMA)
between 2 ASes. To define and discover the outlier cases where
over packet sending from one AS towards the destination site,
e.g., attack case, we use Exponential Bollinger Bands (EBB)
and Stochastic Oscillator (SO). Equation 4 presents the expo-
nential moving average traffic rate from ASi to the destination
in time t, where n is the number of days. We use EMA to

EMA(i→D)(t) = (R(i→D)cur
× 2

1 + n
)

+ (EMA(t− 1) × (1 − 2

1 + n
)) (4)

σ(i→D)(t) =

√∑n
t=1(R(i→D)(t) −R(i→D))

2

n− 1
(5)

EBBupper(i→D)
(t) = EMA(i→D)(t) +m× σ(i→D)(t) (6)

EBBlower(i→D)
(t) = EMA(i→D)(t) −m× σ(i→D)(t) (7)

Stochastic Osc(i→D) =
R(i→D)cur −R(i→D)low30

R(i→D)high30
−R(i→D)low30

(8)



give more significance to the most recent traffic data behavior.
Equation 5 presents the standard deviation of traffic rate from
ASi to the destination in time t. Finally, equations 6 and 7
present the upper and lower bound of Exponential Bollinger
Band, where m is the number of standard deviation. In the
stock market, the m value is usually set to 2. However, the
TCP Round Trip Time estimation suggests 4 [15].

In case R(i→D)cur
> EBBupper(i→D)

(t), the destination
site detects the irregularity of the current packet transmission
from ASi. Next, the destination site checks if this irregularity,
e.g., traffic peak in the current time, happened before in the
last 30 days to ensure the claim. Therefore, it uses Stochastic
Oscillator (SO) to double-check over packet transmission
case. Equation 8 presents the Stochastic Oscillator, where
R(i→D)low30

presents the lowest traffic rate and R(i→D)high30

presents the highest traffic rate over 30 days from ASi to the
destination. Assuming the highest traffic rate is not equal to the
lowest traffic rate, the value of SO is between 0 to 1. A value
close to 1 indicates an over packet sending from ASi towards
the destination. In case R(i→D)cur

< EBBlower(i→D)
(t),

the destination site analyzes the current attack condition and
updates the upstream ASes if the attack is no longer exists.

D. Message Types

In this part, we explain the message types between the
victim AS and upstream ASes. We construct a secure, private,
and authenticated communication channel between them by
using Public Key Infrastructure (PKI) framework for authenti-
cation. The framework contains two PKIs where the first one
is employed for IP prefix attestation and the second one is for
AS number attestation between end-hosts. The communication
routing is over the path chosen by BGP, which is already a
defacto intra-AS routing protocol.
I am under attack: After detecting an anomaly in the
incoming traffic, the victim site calculates the rate throttling
value and sends a query to all upstream ASes. The message
includes throttling rate, suspicious AS number, and suspicious
IP address. Depends on the throttling rate value, the upstream
AS deploys hard throttle or soft throttle to adjust the traffic
rate from suspicious AS to the victim AS.
Are you under attack?: This message type helps for early
attack detection. In case an upstream AS between the attacker
and the victim site detects an anomaly, it sends a message to
the victim site to ensure that suspicious activity is attack activ-
ity. The message includes suspicious AS number, suspicious
IP address, current rate value, and 30 days high and low traffic
rate value. The victim site responds to this type of message
by ”I am under attack” or ”filter is not required”.
Filter is not required: The upstream ASes adjust the traffic
rate by receiving throttling rate from the victim site. Since the
upstream AS needs a confirmation from the victim site for
removing the filter or adjusting the current rate of the AS in
case the attack is no longer exists. The victim site uses this
message type to inform upstream ASes to remove previously
deployed filters. The message includes suspicious AS number,
suspicious IP address, and relaxation parameter (e.g. ϕ = −1).

Extending timeout: In order to prevent additional vulnera-
bilities, the upstream ASes deploy their filters with a timeout
value. If the attack still exists, the victim site needs to send a
message indicates that the filter is still valid.

IV. EXPERIMENTAL RESULTS

One of the main drawbacks of the network security research
field is to deploy the proposed methods in real networks
for testing purposes. ISPs in the Internet are private com-
panies having individual policies and strategies. Therefore,
it is improbable to test the proposed strategies over a real
large-scale Internet network. The best option is to generate
a simulation environment and mimic the Internet. For that
purpose, researchers usually use NS3 type simulators, which
are discrete-event network simulators for Internet systems, or
previously proposed network generators [23].

In our experiments, we used a network simulator that we
developed in one of our previous work [1]. We implement it
by using Matlab, which emulates the approach presented in
Section III. To mimic the real-world Internet, we used real-
world datasets presenting the current Internet topology. We
used the CAIDA IPv4 Prefix-Probing Traceroute Dataset [13]
consisting of more than 20 million (20,377,233) path traces.
The dataset consists of 899, 916 different IP addresses. Note
that we only included the loop-free path traces that reach their
specified destinations. The minimum and maximum Interface
level hop lengths in our dataset are 1 and 31, respectively. The
average hop length is 15.43. Additionally, we used RouteViews
prefix to AS mapping dataset obtained from CAIDA [14].
In order to generate an AS Level Internet topology, we
mapped IP addresses reported in the traceroute dataset to their
corresponding ASes. The dataset consists of 39,148 different
ASes. The minimum and maximum AS level hop lengths in
our dataset are 1 and 12, respectively. The average AS level
hop length is 4.16. We used both datasets to generate Interface-
AS dual-level topology maps.

Because of the simulation limitation, we needed to scale
down our parameters. These parameters are traffic rates, server
load rate limit, server maximum rate, and time. In our method,
we use daily rates with a 30-day exponential moving average.
However, we use 1 minute, representing 1 day for our experi-
mental part. We use a memoryless Poisson distribution model
for traffic generation. Poisson model is one of the most widely
used techniques for traffic modeling in the Internet [22]. The
probability density function of X is defined by:

P (X = k) =
(λk) × (e−k)

k!

where λ is the expected value of X. We assume that a rate from
legitimate user to the victim site is between [0, 50] Mbpm with
a mean of 25 Mb per minute. We randomly choose a traffic
rate for each legitimate user by using the Poisson distribution.
Figure 3 presents a DoS attack case to present our bollinger
band and stochastic oscillator techniques. Note that, we did
not apply any rate throttling in this part of the experiment.
Our main focus is to show the usefulness of anomaly detection



Fig. 3: Traffic coming from a source towards to the victim site without rate throttling
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Fig. 4: DDoS attack towards to the victim site without rate throttling and with rate throttling

techniques that we presented. The blue line presents the traffic
rate, the red line presents the exponential moving average, and
the gray area presents the bollinger band where the black line
is the upper bound and the green line is the lower bound
of the band. In the figure, we show three different attack
cases from a single attacker. We assume that between the
time intervals [0, 100], [200, 300], [400, 500], and [600, 720],
the user does not attack and sends only legitimate packets. The
time interval between [100, 200], the first attack starts with
an attack rate between [100, 250] Mbpm. The time interval
between [300, 400], the second attack starts with an attack
rate between [200, 400] Mbpm. Finally, the last attack occurs
in the time interval [500, 600] with an attack rate between
[250, 500] Mbpm. It is clear that during the attack time, the
rate spikes outside of the bollinger band, which indicates
suspicious activity. Also, whenever the attack ends, the rate
drops under the lower band, indicating a possible end of the

attack. Stochastic Oscillator is also helpful for us to determine
possible attacks. The only drawback in the figure for Stochastic
Oscillator is the time interval between 0 to 100, where the
profiling of the previous activity phase. Since the first attack
did not occur yet, the Stochastic Oscillator takes the maximum
rate from the intended packet rate. However, the profiling
phase occurs at the beginning of the test, whereas once it
is done, the remaining part has no problems, e.g., attack case
in 300, 400. Additionally, R(i→D)cur

(t) 9 R(i→D)reg (t) ≈ 0
where R(i→D)reg (t) = EMA(i→D)(t) during not attack case.
Therefore, the victim site is able to differentiate the usefulness
of Stochastic Oscillator by checking the regular traffic rate
from the suspected attacker.

Next, we implement a DDoS attack case and show rate
throttling results. In this experiment, we randomly choose a
victim and 500 path traces. In case we are unable to get enough
path traces for a specific victim, we restart the victim selection



process. We assume that the 100 of the end hosts are legitimate
users without sending any attack packets. The remaining 400
of the end hosts are attackers. We follow the same attack rate
and time intervals presented above for each end host. We set
the load limit rate of the destination, RDlim

, as 50, 000 Mb.
We set the maximum rate that the destination can operate,
RDmax

, as 100, 000 Mb.
Figure 4 presents the rate throttling algorithm in action.

The top figure shows the attack without rate throttling and
the bottom figure shows the attack with rate throttling. Note
that, our goal is to keep the current rate of the destination
under RDmax

and close to RDlim
. In the first attack at time

[100, 200], the attack rate is under the RDmax
. Therefore, the

fair rate throttling algorithm applies soft throttling. However,
the attacks in [300, 400] and [500, 600] exceeds the RDmax

.
The victim site needs to take action immediately to prevent
service failure. The algorithm applies hard throttling to reduce
the attack traffic under the maximum load rate.

V. CONCLUSIONS

DDoS attacks are among the most harmful cyberattack types
in the Internet. The main goal of a DDoS defense mechanism
is to reduce the attack’s effect as close as to their sources
to prevent malicious traffic in the Internet. In this work, we
propose a collaborative fair rate throttling mechanism to com-
bat DDoS attacks. Additionally, we propose attack detection
mechanisms at the victim site, early attack detection mech-
anisms, and feedback mechanisms between ASes to achieve
distributed defense against DDoS attacks. To reduce additional
vulnerabilities for the feedback mechanism, we use a secure,
private, and authenticated communication channel between
AS monitors to control the process. Our mathematical model
presents proactive resource management, where the victim site
calculates a throttling rate based on the current conditions
of the traffic load and sends filtering requests to upstream
routers to reduce the traffic rate coming from suspicious
ASes. We conducted several experiments using a real-world
dataset to demonstrate the efficiency of our approach under
DDoS attacks. Our results show that the proposed method can
significantly reduce the impact of DDoS attacks with minimal
overhead to routers. Moreover, the proposed anomaly detection
techniques can help ASes to detect possible attacks and early
attack detection by intermediate ASes.
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