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Abstract—This paper introduces a new approach for detecting
unusual activities in network traffic, a critical aspect in main-
taining network security. We propose an innovative model that
combines the strengths of Contractive Autoencoders (CAEs) and
K-means clustering, specifically designed for effective anomaly
detection in network environments. Our model employs CAEs
for efficient data processing and K-means clustering to identify
deviations from standard network patterns. The focus is on the
exploration of CAE’s latent space and the impact of various
deep learning parameters on the model’s detection capabilities.
Tested on the NSL-KDD dataset, a standard in network security
research, our best-tuned model achieves an F1 Score of 0.92,
making it approximately 8.2% more effective than the basic
Autoencoder model and about 5.7% better than the standalone K-
Means approach in terms of F1 Score. This significant improve-
ment in performance highlights the advanced capabilities of our
model in identifying potential threats in network traffic, marking
a considerable advancement in the field of network security.

Index Terms—Network Security, Anomaly Detection, Deep
Learning, Autoencoder, Contractive Autoencoder, K-means Clus-
tering, Network Traffic Analysis, Intrusion Detection, CAE-K-
means Model, Cybersecurity

I. INTRODUCTION

Network security is a vital aspect of the modern digital
world but is threatened by the continuous development of
complex cyberattacks. Major modern cyber threats include
denial of service (DoS) and its distributed form (DDoS),
which focus on disrupting network availability by flooding
with traffic [3, 8]. Traditional techniques for identifying abnor-
malities in network traffic, while foundational, are increasingly
insufficient against these evolving threats. This inadequacy
highlights the need for more advanced detection methods.
In this work we address this need by presenting a novel
approach that integrates Contractive Autoencoders (CAEs)
with K-means clustering.

Our goal is to develop a more robust network security
system by creating a novel technique for detecting anomalies
in network data that is both more accurate and efficient.
Our method first leverages CAEs to identify standard traffic
patterns, simplifying the network data. We then apply K-
means clustering on this processed data to pinpoint devi-

ations that may indicate anomalies. A key aspect of our
study is examining the CAE’s latent space - the compressed
data representation - and how its configuration can enhance
anomaly detection. Furthermore, we explore how different
deep learning parameters impact the performance of detecting
network intrusions. In summary, our approach combines CAEs
and K-means clustering in an innovative way to improve
network security against sophisticated modern threats.

The main contributions of this paper are summarized as
follows:

• Developing a new anomaly detection model that com-
bines Contractive Autoencoders with K-means clustering,
specifically designed for network traffic analysis.

• Exploring the CAE’s latent space and deep learning
hyperparameters to improve anomaly detection perfor-
mance.

• Evaluating the model’s performance on the NSL-KDD
dataset, demonstrating superior accuracy over existing
techniques.

The rest of the paper is structured as follows. Section II
reviews various network attack detection approaches. Section
III provides our methodology. Section IV presents our results.
Lastly, Section V concludes the paper.

II. RELATED WORK

Recent developments in anomaly detection have seen ma-
jor contributions, especially in exploring autoencoder latent
spaces. This section highlights key studies aligned with our
research’s focus on utilizing autoencoders’ latent space, partic-
ularly Contractive Autoencoders (CAE), to identify anomalies.

Erfani et al. [7] investigate a hybrid model combining deep
autoencoders with One-Class SVMs for detecting anomalies
in network traffic. This demonstrates a novel approach for
discerning between normal and anomalous traffic patterns.

Sakurada and Yairi [12] explore using autoencoders for
anomaly detection in complex systems. They show how au-
toencoders can efficiently handle high-dimensional data and
identify anomalies based on reconstruction errors, which is
highly relevant to our latent space analysis.



Moreover, Zhai et al. [10] experiment with deep structured
energy-based models for anomaly detection, offering insights
into adapting deep learning, especially autoencoders, to pin-
point irregular patterns in datasets.

In our previous research [11], we made contributions to
this rapidly progressing field by developing a deep learning
model that utilized a contractive autoencoder for DDoS attack
detection. Our focus was on training the model to differentiate
between normal and anomalous network traffic based on their
compressed representations in the latent space, subsequently
applying a stochastic threshold method to detect attacks. We
evaluated our model on well-established datasets showing im-
proved performance compared with the other existing models.

These prior studies establish the foundation for our current
research by demonstrating various techniques for utilizing
autoencoders for anomaly detection. Our present work aims to
advance these approaches further by focusing on optimizing
the latent space of contractive autoencoders, enabling more
effective anomaly detection.

III. METHODOLOGY

Our anomaly detection approach in network traffic in-
tegrates two key machine learning concepts: Autoencoders
and K-means clustering. This section outlines the theoretical
framework and practical implementation of these concepts in
our study.

A. Autoencoder

An autoencoder is an unsupervised neural network used
for learning efficient data codings. Its architecture has two
primary components: an encoder and a decoder. The encoder
compresses the input into a lower-dimensional latent space,
while the decoder reconstructs the original input from this
compressed representation. By attempting to replicate the in-
put, the autoencoder learns to capture its most salient features
[13].

The autoencoder aims to minimize reconstruction error,
typically measured by mean squared error between the input
and output. Mathematically, its objective function is:

JAE(θ) =
1

n

n∑
i=1

||xi − x′
i||2 (1)

where n is the number of data points, xi is the ith input, and
x′
i is the ith reconstructed input. By optimizing this objective,

the autoencoder learns an efficient compressed representation
of the input for effective coding and reconstruction.

B. Contractive Autoencoder

A Contractive Autoencoder (CAE) modifies the standard
autoencoder by adding a regularization term to the loss func-
tion. This regularization term is the Frobenius norm of the
Jacobian matrix of the encoder activations with respect to the
input. Adding this term enhances the robustness of the learned
representations by making them invariant to small variations
in the input data [14].

The objective function for a CAE is:

JCAE(θ) =
1

n

n∑
i=1

||xi − x′
i||2 + λ||Jf (x)||2F , (2)

where λ is a hyperparameter that controls the tradeoff be-
tween reconstruction accuracy and robustness of the extracted
features. By including this additional regularization penalty,
the CAE learns latent representations that are more robust to
minor input perturbations.

C. K-means Clustering

K-means is a widely used clustering algorithm in machine
learning that partitions data points into K distinct clusters
based on feature similarity. The algorithm is designed to
minimize the within-cluster variance by assigning each point
to the nearest of the K clusters [5]. This makes it well-suited
for detecting outliers or anomalies which are distant from
cluster centers.

D. Integrated Method for Anomaly Detection

Our integrated anomaly detection approach uses Contractive
Autoencoders (CAEs) and K-means clustering to improve
performance on network traffic data. The method first trains
a CAE on normal network data, enabling it to learn standard
traffic patterns in the latent space. K-means clustering is then
applied in this latent space to differentiate between regular and
anomalous data points.

Additionally, we tune CAE hyperparameters including batch
size, hidden layers, regularization, and learning rate to op-
timize anomaly detection capability. We also implement a
technique to find the best threshold for identifying anoma-
lies using K-means distance metrics. Through evaluation,
the threshold maximizing F1 score is selected for accurate
anomaly detection.

Extensive benchmarking confirms the reliability and ac-
curacy of this integrated approach for network anomaly de-
tection, outperforming conventional methods. In summary,
our technique combines the strengths of deep learning and
clustering to improve anomaly detection.

The algorithm 1 briefly summarizes the key steps of our
anomaly detection method. It first trains a CAE on normal
traffic to learn standard patterns (line 6). The CAE encoder
extracts latent representations for train, validation, and test data
(lines 7-9). Optimal threshold is determined by maximizing
validation F1 score (lines 10-12). This threshold classifies test
data by comparing latent representation distances to clusters
(lines 13-14), and performance is evaluated against test labels
(lines 15).

IV. EXPERIMENTS

In this section, we first summarize the datasets utilized
for our experiments. After that, we explain the evaluation
metrics of our proposed model’s performance, detailing our
experimental setup. Finally, we show the experimental results
of our proposed model and compare them with the related
works.
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Algorithm 1 Integrated Anomaly Detection with CAE and
K-means

1: procedure INTEGRATED ANOMALY DETECTION(Xtrain,
Xval, Xtest, yval, ytest)

2: Input:
3: Xtrain, Xval, Xtest = Network traffic data
4: yval, ytest = Data labels
5: CAEmodel = TUNE CAE PARAMS( ) ▷ Tune

hyperparameters
6: trained CAE = TRAIN CAE(CAEmodel, Xtrain) ▷

Train on normal data
7: Ztrain = Encode(Xtrain) ▷ Get latent features
8: Zval = Encode(Xval)
9: Ztest = Encode(Xtest)

10: clusters = KMeans Clustering(Ztrain)
11: distancesval = DISTANCE(Zval, clusters)
12: optimal threshold =

FIND OPTIMAL THRESHOLD(distancesval, yval)
13: distancestest = DISTANCE(Ztest, clusters)
14: ypred = CLASSIFY(distancestest, optimal threshold)
15: metrics = EVALUATE(ytest, ypred)
16: return metrics

A. Dataset Description and Preprocessing

For evaluating our model, we leveraged the NSL-KDD
dataset [2], an improved version of the widely used KDD
Cup ’99 dataset. The NSL-KDD dataset addresses the class
imbalance and redundancy limitations present in the original
KDD data [4]. It contains a range of network intrusions along
with normal traffic, making it suitable for benchmarking real-
world network intrusion detectors. Specifically, the NSL-KDD
dataset includes various attack types - denial-of-service, prob-
ing, remote-to-local, user-to-root, and benign traffic collected
over TCP/IP. It has 41 features related to connection duration,
protocols, and traffic and various traffic characteristics [6].
We performed the following preprocessing steps for effective
training of our model:

• Feature Selection: Removed non-essential features, such
as socket information (Source/Destination IP, Ports, and
Flow ID) to avoid overfitting and improve model gener-
alizability [11].

• One-hot Encoding: Encoded categorical features into
numerical form through one-hot encoding. This approach
expanded the feature set from 41 to 121 numeric features,
enhancing the model’s ability to distinguish between
different traffic types.

• Class Label Encoding: Encoded the class labels into
binary values, with ‘1’ representing anomalies and ‘0’
representing normal traffic, aligning with the binary clas-
sification approach of our model.

• Duplicate Removal: Removed duplicate records to avoid
training bias, ensuring equal representation of each pat-
tern [11].

• Data Cleaning: Filtered samples with NaN or INF values

to maintain data integrity and quality.
• Normalization: Normalized numeric features to [0,1]

range using min-max normalization.
• Constant Feature Removal: Removed features with con-

stant values across all samples to reduce dimensionality
without losing significant information.

B. Experimental Setup

We employed a comprehensive evaluation approach for our
anomaly detection model using the NSL-KDD dataset, encom-
passing the computational environment, model configuration,
training strategy, and assessment techniques.

1) Computational Environment: The experiments were
conducted in PyTorch, enabling efficient neural network op-
erations. The hardware comprised an Intel Core i7 processor
and 16GB RAM for rapid data processing.

2) Model Configuration: The model architecture was a
contractive autoencoder, chosen for its robust feature learning
capabilities to capture normal network behavior patterns. The
input layer corresponded to the 121 preprocessed NSL-KDD
features. One hidden layer, referred to as the latent layer, was
used to learn an optimized compressed representation. The
output layer reconstructed inputs for compact representation
learning.

3) Training Strategy: We divided the NSL-KDD dataset
into three subsets: 70% for training, 15% for validation, and
15% for testing. The training set included only normal traffic
to align with the one-class classification approach. The model
was trained to minimize the reconstruction error, essential for
learning the normal behavior in network traffic.

4) Hyperparameter Tuning: To optimize our model’s per-
formance, we conducted a two-phase hyperparameter tuning
process. Initially, we explored a limited range of key hyper-
parameters including batch size, hidden dimensions, lambda
regularization values, and learning rate. Different combinations
of these parameters were iteratively evaluated to fine-tune the
Contractive Autoencoder. Specifically, batch sizes of {32, 64,
128, 256}, hidden dimensions of {32, 64}, initial lambda
values of {0.0001, 0.001, 0.01}, and learning rates of {0.001,
0.0001} were tested.

After identifying the most promising lambda value from this
initial set, we further expanded our analysis to a broader range
of lambda values. This extended exploration of regularization
strength was critical to fully understand its impact on our
model’s capabilities and determining the optimal configura-
tion.

5) Evaluation and Validation: We utilized multiple perfor-
mance metrics beyond just accuracy. This provides a more
comprehensive assessment, which is important for imbalanced
anomaly datasets where anomalies occur much less frequently
than normal samples [1]. With such skewed distributions, accu-
racy alone can be misleading if models achieve high accuracy
by primarily classifying the majority normal data correctly.
Our multi-metric approach enables properly evaluating the
model’s ability to identify rare anomalies, not just accurately
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Fig. 1: Comparison of Model Performance Across Different
Hyperparameter Combinations

TABLE I: Hyperparameters Used for Model Tuning

Hyperparameter Range of Values

Batch Sizes 32, 64, 128, 256
Hidden Dimensions 64, 32
Learning Rates 0.001, 0.0001
Lambda (Contractive Loss Coefficient) 0.0001, 0.001, 0.01

classify predominant normal data. This ensures rigorous vali-
dation of real-world anomaly detection capabilities.

• Performance Metrics: Our key indicators included ac-
curacy, precision, recall, F1-score, and PR-AUC.
– Precision: Defined as the proportion of correctly iden-

tified positive instances out of all predicted positive
instances. Calculated as Precision = TP

TP+FP . High
precision indicates a low rate of false alarms.

– Recall: Also known as sensitivity, it measures the pro-
portion of actual positives that are correctly identified.
Calculated as Recall = TP

TP+FN .
– Accuracy: Measures the proportion of total predic-

tions that are correct. Calculated as Accuracy =
TP+TN

TP+FP+TN+FN .
– F1-score: Harmonic mean of precision and recall,

providing a balance between them. Calculated as
F1-score = 2 · Precision·Recall

Precision+Recall .
– PR-AUC: The area under the precision-recall curve. It

is important in imbalanced datasets as it focuses on
the performance of the model on the minority class,
offering insight into how well the model detects actual
positives.

• Validation: We regularly validated the model on a dedi-
cated set to fine-tune its performance and reduce overfit-
ting.

• Testing: The final assessment involved both normal and
anomalous samples in the test set, examining the model’s
generalization and anomaly detection capabilities.
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Fig. 2: Impact of Varying Lambda Values on Model Perfor-
mance
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Fig. 3: Comparison of Model Performance

C. Results and Discussion

This subsection presents and discusses the results of our
experiments on the NSL-KDD dataset using the proposed
anomaly detection model. The findings are analyzed in the
context of hyperparameter tuning, the impact of varying
lambda values, and the comparative performance of our model
against other methods.

1) Hyperparameter Tuning Analysis: As indicated in Table
I and Figure 1, extensive hyperparameter tuning was con-
ducted. The optimal combination was identified as a batch
size of 32, hidden dimension of 32, lambda value of 0.0001,
and a learning rate of 0.001. This combination resulted in
the most effective learning and generalization capabilities for
the model. Smaller batch sizes were found to be beneficial
in terms of model accuracy and training efficiency, while
the selected hidden dimension allowed for efficient feature
extraction without overfitting.

2) Impact of Lambda on Model Performance: Our exper-
iments evaluated various lambda settings in the contractive
autoencoder to determine the optimal value for anomaly de-
tection, as shown in Figure 2. Lambda controls the regulariza-
tion strength, which is critical for model tuning. This figure
illustrates the impact of different lambdas on the F1 score
and Precision-Recall AUC, important metrics for assessing
anomaly detection. Through experimentation, a lambda value
of 0.0001 achieved peak results, with the model reaching an
F1 score of 0.9189 and Precision-Recall AUC of 0.9291,
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as depicted by the scores in Figure 2. This demonstrates
the model’s enhanced accuracy and reliability in identifying
network anomalies at the optimal lambda setting.

3) Comparative Model Performance: In the comparative
analysis, our model’s efficacy, employing an optimized lambda
parameter in a contractive autoencoder, was benchmarked
against two baseline models. The first baseline is a stan-
dard autoencoder with no contraction penalty, denoted as the
lambda 0 model, and the second is the conventional K-means
clustering algorithm. The objective was to discern whether the
latent representations derived from the contractive autoencoder
could enhance the K-means algorithm’s capability to segregate
anomalous patterns from network traffic.

Referencing Figure 3, the integration of K-means with
the contractive autoencoder’s latent space yielded superior
anomaly detection performance compared to the standalone
models. This approach leverages the autoencoder’s proficiency
in capturing critical features, thereby facilitating a more pre-
cise clustering by the K-means algorithm.

The findings validate the hypothesis that the enhanced
feature sensitivity introduced by the contractive autoencoder
significantly bolsters the K-means algorithm’s ability in differ-
entiating between normal and abnormal network behaviors, a
level of discrimination not achieved by using a basic autoen-
coder or K-means alone.

V. CONCLUSIONS

In this paper, we have presented a new model integrating
Contractive Autoencoders and K-means clustering for detect-
ing anomalies in network traffic. Our approach was thoroughly
evaluated on the NSL-KDD dataset. Experiments optimizing
the CAE’s lambda hyperparameter identified 0.0001 as the
optimal value, achieving peak F1 and AUC scores of 0.9189
and 0.9291 respectively. This demonstrates the model’s en-
hanced accuracy and reliability for network anomaly detec-
tion when tuned properly. Comparative analysis showed our
integrated method outperforms standard autoencoders and K-
means alone. The results highlight the potential of combining
deep learning and clustering techniques for more effective
network security solutions.
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