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Abstract—Securing Internet of Things (IoT) devices against
threats is crucial due to their significant impact on cyber-physical
systems. Traditional intrusion detection systems often fall short
in protecting the vast and diverse array of IoT devices. One
key limitation is their lack of an anomaly detection objective,
which is essential for identifying sophisticated threats that do
not match known patterns. To address this critical gap, we
have introduced a unique approach that utilizes an objective-
based anomaly detection model. Our model, integrating a Deep
Support Vector Data Description (DSVDD) with a Contrac-
tive Autoencoder (CAE), named DSVDD-CAE, enhances the
relevance of latent representations for anomaly detection and
thereby improves accuracy. This innovative combination has
significantly outperformed popular anomaly detection algorithms
like KMeans, OCSVM, and Isolation Forest. On the ToN-IoT
dataset, our method achieved a precision of 98.77%, a recall of
99.74%, an Fl-score of 99.25%, and an accuracy of 99.57%.
Similarly, on the IoTID20 dataset, it reached a precision of
98.25%, a recall of 99.80%, an Fl-score of 99.01%, and an
accuracy of 99.64%. These results demonstrate that our model
excels in accurately detecting both known and novel IoT attacks,
thereby significantly advancing the field of IoT security and
providing a more resilient cyber-physical ecosystem.

Index Terms—Internet of Things, IoT, Anomaly Detection,
Deep Learning, Autoencoder, Contractive Autoencoder, Support
Vector Data Description, DSVDD-CAE, IoT Security, Intrusion
Detection

I. INTRODUCTION

The Internet of Things (IoT) represents a network of in-
terconnected devices that enable continuous communication
between physical devices [1]. The rapid evolution of these
devices has led to the development of smart ecosystems.
However, this has attracted the attention of cybercriminals,
making [oT vulnerable to potential malicious attacks. Among
the most notable threats are the denial of service (DoS)
and distributed denial of service (DDoS) attacks, which aim
to overload the capacity of the network gateway [24]. For
example, the Mirai botnet attack in 2016 [8] and the Reaper
botnet discovered in 2017 [9], both targeted IoT devices and
caused significant disruptions, highlighting the urgent need for
effective 10T intrusion detection systems (IDS) that can detect
both known and zero-day attacks [1]. Traditional IDSes mostly
rely on predefined rules or signatures making them effective
against known threats, but they struggle to detect novel or
complex attacks [10]. Furthermore, the high dimensionality
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and heterogeneity of IoT data present significant challenges
for these traditional detection methods, often resulting in a
high number of false alarms.

To address these challenges, researchers have adopted ma-
chine learning techniques for developing IDS. However, most
of the traditional machine learning models follow shallow
learning methods, failing to detect the attack from an enormous
dataset. Recently, deep learning based IDS methods have
grabbed significant attention since they are beneficial for large
and complex networks due to their ability to extract more
sophisticated features. Among these, the autoencoders based
techniques have emerged as a promising approach owing to
their capability to learn a compact representation of the data,
which can be used to detect anomalies or attacks [12].

In this paper, we propose a novel deep learning model for
IoT attack detection based on contractive autoencoders and
deep support vector data description (DSVDD), whose ob-
jective function is based on anomaly detection. The objective
function guides the learning process of the model, encouraging
it to bring similar data points close together in a sphere-like
region while keeping them distinct in the underlying space.
This helps in effectively distinguishing between normal and
unusual data points [21]. Our model leverages the ability of
autoencoders to learn a compact representation of the data and
the robustness of DSVDD to outliers, making it effective at
detecting both known and novel attacks. By combining this
anomaly detection-based objective function with techniques
that learn a compact representation of the data and are robust
to outliers, our model becomes effective at detecting both
known and new types of attacks. We evaluate our model on
benchmark IoT datasets and show that it outperforms existing
methods in terms of state-of-the-art evaluation metrics.

The key contributions of this paper are as follows:

« We propose a novel DSVDD-CAE model for detecting
attacks in IoT networks, combining the robustness of
contractive autoencoders and the anomaly detection ca-
pabilities of Deep SVDD.

« We employ a semi-supervised training approach that uses
only normal data. This approach enables the model to
identify anomalies based on their deviation from the
normal representation.



« We implement a stochastic approach for optimal threshold
selection, enhancing the model’s accuracy in anomaly
detection.

« We validate effectiveness of our model using two different
datasets: the ToN-IoT dataset [19] and the IoTID20
dataset [23]. The results demonstrate superior perfor-
mance compared to other state-of-the-art machine learn-
ing models on both datasets.

The rest of the paper is arranged as follows. In Section
II, various IoT attack detection methods have been discussed.
Section III provides our methodology. Our experimental re-
sults have been demonstrated in Section IV. Lastly, Section V
concludes the paper.

II. RELATED WORK

In today’s digital age, the Internet of Things (IoT) has
created a new ecosystem of interconnected devices, which is
frequently being utilized by many organizations to enhance
their performance and make more informed decisions [15].
However, the surge in Internet of Things (IoT) devices and
applications introduces security vulnerabilities, necessitating
the development of advanced anomaly detection methods.
Over recent years, machine learning and artificial intelligence
have emerged as promising tools for enhancing security in IoT
environments.

In the early stages of this field, Kolias et al. [7] conducted
research on the Mirai botnet, one of the initial botnets to
utilize Internet of Things (IoT) technology. They emphasized
some of the unique difficulties associated with IoT devices,
including their heterogeneity and the significant amount of
network traffic that is generated. Their innovative work marked
the beginning of using machine learning techniques to detect
IoT-originated attacks. Building on earlier work, Booij et al.
[16] highlighted the importance of diversity within the intru-
sion detection datasets in the IoT domain. They introduced
the ToN-IoT dataset, which has a variety of features and
attack types. They also developed a new method to compare
datasets using cross-training classifiers, showing the necessity
of diverse configuration requirements for detecting network
intrusions in IoT.

Meidan et al. [14] introduced a network-based detection
technique called N-BaloT, which uses deep autoencoders to
detect IoT botnet attacks. The authors infected nine commer-
cial IoT devices in their lab with two of the most widely known
JIoT-based botnets, Mirai and BASHLITE1. Their method
extracts behavior snapshots of the network and trains deep au-
toencoders to learn the usual behaviors of IoT devices. When
the autoencoder fails to reconstruct a sample, anomalies are
detected by indicating a deviation from the normal behavior.
This approach has demonstrated a significant contribution to
the IoT intrusion detection field.

Moustafa et al. [13] developed a realistic botnet dataset
named Bot-IoT, which includes both legitimate and simulated
IoT network traffic along with various types of attacks. They
also presented a realistic testbed environment to address the
limitations of existing datasets. The reliability of their dataset

was evaluated using statistical and machine learning methods
for forensic purposes, providing a baseline for identifying
botnets in IoT-specific networks. The authors emphasized
the significance of developing intelligent Intrusion Detection
Systems (IDS) for IoT devices, considering the expanding
attack surface and the rising frequency of attacks on IoT
platforms.

Khraisat et al. proposed a novel ensemble Hybrid Intrusion
Detection System (HIDS), which combines the benefits of
both the Signature Intrusion Detection System (SIDS) and
the Anomaly-based Intrusion Detection System (AIDS), to
improve IoT device security [17]. The system’s performance
was assessed using the Bot-IoT dataset, where it showed
higher detection rates and fewer false positives compared to
conventional IDS methods.

Even with significant advancements in IoT security, the
necessity for a model that can accurately detect both known
and unknown attacks continues to be a critical requirement.
A key limitation in many existing techniques is the lack
of an anomaly detection objective. This paper proposes a
novel model that addresses this gap by incorporating an
anomaly detection objective, combining the strengths of Deep
Support Vector Data Description (DSVDD) and Contractive
Autoencoder (CAE). Employing a semi-supervised approach,
our model identifies anomalies by analyzing the reconstruction
error and the distance to the center of a hypersphere in
the latent space. This methodology enables our model to
accurately detect both known and novel attacks, enhancing
IoT security by addressing the limitations of existing methods,
which often go unnoticed by traditional Al tools.

III. PROPOSED METHODOLOGY

In this section, we present the core components of our in-
trusion detection model. This model, named the Deep Support
Vector Data Description based on Contractive Autoencoder
(DSVDD-CAE), combines the characteristics of contractive
autoencoders with Deep Support Vector Data Description.

A. Contractive Autoencoder

An Autoencoder is a type of neural network designed to
encode inputs into a compressed form and then decode it
to reconstruct the original data. The objective is to extract
the essential features of the data in the compacted form. The
autoencoder consists of two parts: an encoder that maps the
input data into a low-dimensional latent space, and a decoder
that rebuilds the input data from this latent representation [2].

An autoencoder is trained to minimize the difference be-
tween the original input and its reconstruction, which is called
the reconstruction error. This is typically measured using a loss
function such as the mean squared error. By minimizing this
loss, the autoencoder learns useful features of the input data
through the encoding process, enabling it to reconstruct the
original input accurately.

The objective function of the autoencoder can be repre-
sented as:
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where n is the number of data points, z; is the i-th input
data point, and z} is the i-th reconstructed data point.

While a basic autoencoder focuses on reconstructing the
input by keeping the reconstruction loss as less as possible, a
contractive autoencoder is another type of autoencoder that is
designed to learn a robust representation of the input data. It
introduces a penalty term to the standard reconstruction loss
function of the autoencoder, which is called the Frobenius
norm of the Jacobian matrix of the encoder activations with
respect to the input. This encourages the model to learn a
representation of the input data that is invariant to small
changes in the input [3].

The objective function of a contractive autoencoder can be
represented as:
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where n is the number of data points, x; is the i-th input data
point, 7} is the i-th reconstructed data point, ||J;(z)||% is the
squared Frobenius norm of the Jacobian matrix of the encoder
activations with respect to the input, and A is a hyperparameter
that controls the trade-off between the reconstruction error and

the robustness of the representation.

B.  Support Vector Data Description (SVDD)

Support Vector Data Description, typically referred to as
SVDD, is a one-class classification method that aims to dis-
tinguish data by placing it within a hypersphere in a designated
feature space [20]. The purpose is to have regular data points
inside this hypersphere and any unusual or outlier points
outside of it. The primary objective of SVDD is to find the
most compact or smallest hypersphere, characterized by its
center ¢ € Fj, and radius R, that encompasses the majority of
the usual data in the feature space F.

Given a dataset D,, = {z1,%2,..., 2y}, the mathematical
representation of SVDD’s objective is to minimize [20]:
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In the above formulations:

o The notation || - || denotes the Euclidean norm which
measures the distance between two points in the feature
space.

o The variables &; are known as slack variables, introduced
to provide flexibility to the hypersphere boundary and
handle potential outliers or anomalies in the data.

o The parameter + is a regularization term that controls the
trade-off between the minimization of the hypersphere

radius and the penalty incurred by the data points that lie
outside the hypersphere.

Fig. 1 provides a visual representation of the SVDD method.
The normal samples presented in green reside within the de-
picted hypersphere, defined by radius R. In contrast, anomalies
are marked in red, positioned outside the hypersphere bound-
ary, indicating their deviation from the usual data distribution.
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Fig. 1: Visualization of SVDD hypersphere with normal and
anomalous data points.

C. Deep SVDD with Contractive Autoencoding (DSVDD-
CAE)

In this work, we have integrated the principles of Contrac-
tive Autoencoders (CAE) with Deep Support Vector Data De-
scription (DSVDD) to introduce a novel approach, DSVDD-
CAE, for anomaly detection. This model is designed to learn
a compact and robust representation of the input data in a low-
dimensional latent space and to detect anomalies based on the
distance of the data points to the center of a hypersphere in
this latent space.

The DSVDD-CAE model leverages the strengths of both
the contractive autoencoder and Deep SVDD. The contractive
autoencoder part of the model learns a robust representation
of the input data that is invariant to small changes in the
input, which is achieved by adding a regularization term to
the loss function of the standard autoencoder. This encourages
the autoencoder model to generate robust representations by
mapping similar inputs to similar points in the latent space.

The Deep SVDD aspect of the model, unlike traditional
SVDD that operates in the original feature space, introduces
a hypersphere in the latent space and employs a deep neural
network to map the data into a low-dimensional latent space,
making it more suitable for handling high-dimensional data
[4]. The center and radius of this hypersphere are learned
during the training process. The goal of Deep SVDD is to
map the data into a low-dimensional latent space and capture
the majority of the data within this hypersphere. This can be
formulated as:
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where f(x;) is the i-th encoded input, ¢ and R represent the
center and radius of the hypersphere. This function encourages
the model to map the usual data points close to the center of
the hypersphere in the latent space. The integration of Deep
SVDD aids in effectively dealing with high-dimensional data
and ensuring that the model captures the underlying structure
of the data in a compact latent space, which in turn facilitates
more accurate anomaly detection.

The objective function of our DSVDD-CAE model can be
represented as:

Jpsvpp—cae(0) = Joar(0) + aJpsvpp(8), (6)

where « is a hyperparameter that controls the trade-off
between the two objectives, contractive autoencoder and Deep
SVDD.

We have trained our DSVDD-CAE model using a semi-
supervised learning approach using only normal data. The
model jointly learns to reconstruct the normal data with a low
reconstruction error and to map the normal data points close
to the center of the hypersphere in the latent space. Since
the model has not utilized any anomalous instance during
training, it generates a high reconstruction error and maps
those points far from the center of the hypersphere. This
combined difference of reconstruction error and distance to
the center of the hypersphere is used to classify data points as
normal or anomalous. We evaluated the model’s performance
using a separate test set containing a mixture of both normal
and anomalous samples. The model’s performance has been
measured using metrics such as accuracy, precision, recall, and
Fl-score.

D. Anomaly Detection using DSVDD-CAE

The proposed anomaly detection model utilizes a Deep
SVDD model with a Contractive AutoEncoder (DSVDD-
CAE). The model operates in three main steps as outlined
in Algorithm 1:

1. Anomaly Score Calculation: The first stage, outlined
in lines 17-23 of Algorithm 1, involves the calculation of an
anomaly score. This score measures how much a data point
deviates from it’s normal behavior. It is calculated using two
factors: the distance from the center of the hypersphere in the
latent space, and the reconstruction error. The formula for this
computation is:

s(xi) = ||z — cl|* + o x MSE(;, ), 7

Here, z; represents the encoded form of x; as seen in line
18 of Algorithm 1, ¢ denotes the center of the hypersphere,
Z; is the reconstructed data point as computed in line 20
of Algorithm 1, and « is a hyperparameter that controls the
balance between the two terms. The MSE term, computed in
line 21 of Algorithm 1, represents the mean squared error
between the original and reconstructed data points, termed as
the reconstruction error.

2. Threshold Selection: As outlined in lines 7-16 of Al-
gorithm 1, this step focuses on finding an optimal threshold.

Algorithm 1 Anomaly Detection using DSVDD-CAE

1: function PREDICT(xtrain, xtest, xval, yval)
2: score-normal <— ComputeAnomalyScore(xtrain)
3: threshold < GetOptimalThreshold(xval, yval, score-
normal)
anomaly score <— ComputeAnomalyScore(xtest)
is anomaly <— anomaly score > threshold
return is anomaly

: function GETOPTIMALTHRESHOLD(xval, yval, score-
normal)
8: Define a range of potential_thresholds from min(score-
normal) to max(score-normal)
9: best_fl1 < 0
10: best_threshold < potential_thresholds[0]
11: for each threshold in potential_thresholds do

N R

12: Predict anomalies for xval based on current thresh-
old to get predicted_yval

13: Compute F1 score using actual yval and pre-
dicted_yval

14: if current F1 score > best_f1 then

15: Update best_f1 and best_threshold with current
F1 score and threshold

16: return best_threshold

17: function COMPUTEANOMALY SCORE(X)

18: z <— Encodelnput(x)

19: distance <— ComputeDistance(z)

20: x recon <— Decodelnput(z)

21: recon error <— ComputeReconstructionError(x recon,
X)

22: anomaly score <— CombineScores(distance, recon er-
ror)

23: return anomaly score

The selection of this threshold is crucial as it decides if a data
point is an anomaly based on its anomaly score. This step is
performed using validation data, which has both normal and
anomalous samples. Anomaly scores are calculated for each
data point in this validation set.

The optimal threshold is derived by analyzing the F1-score
across a range of potential thresholds, which is established
from the minimum to the maximum score observed in normal
data (score-normal), as demonstrated in line 8 of Algorithm
1. The Fl-score, combining precision and recall, is essential
in binary classification analysis. Precision is the ratio of true
positive results among all classified as positive, while recall
is the proportion of true positive results among all actual
positive instances (see Section I'V-C for more details). For each
threshold within this range, the Fl-score is calculated on the
validation set, which is a mix of normal and anomalous sam-
ples. By iterating through this range, the algorithm identifies
the threshold that maximizes the F1-score, ensuring a balanced
trade-off between precision and recall, which is crucial for the
effective detection of anomalies.

3. Anomaly Detection: Lines 1-6 of Algorithm 1 present



the anomaly detection method, which employs the trained
model and chosen threshold to detect anomalies. For any
given data point, the model initially encodes it into a lower-
dimensional space using DSVDD-CAE, followed by decoding
to reconstruct the original input. Subsequent computations
determine the reconstruction error and the distance to the
center of the hypersphere. A data point is categorized as an
anomaly if its calculated anomaly score meets or exceeds the
threshold; otherwise, it is classified as normal.

This procedure establishes a robust method for anomaly
detection in data, utilizing both distance-based and
reconstruction-based approaches.

IV. EXPERIMENTS

In this section, we summarize the dataset utilized for
our experiments, explain the evaluation metrics of our pro-
posed model’s performance, detail our experimental setup, and
present the experimental results.

A. Dataset

We conducted our experiments using two datasets: the TON-
IoT dataset [19] and the IoTID20 dataset [23]. These datasets
are designed to simulate realistic network traffic patterns in IoT
environment, including both normal and anomalous behaviors.

The TON-IoT dataset [19] comprises network traffic data
gathered from various 10T and IIoT sensors, along with system
trace datasets from Linux and Windows systems. We specifi-
cally utilize the Windows 10 subset in this paper, which was
gathered using the Performance Monitor Tool on Windows 10
systems. This subset records a variety of activities, including
desk, processor, memory, process, and network activities from
the Windows 10 systems, comprising a total of 124 features
with seven distinct types of attack.

The IoTID20 dataset, proposed by Ullah and Mahmoud
[23], is another comprehensive dataset for evaluating intrusion
detection systems in IoT networks. It includes a significant
set of features with corresponding weights and provides a
foundation for developing new intrusion detection techniques.
The dataset was generated using a well-designed testbed
architecture that mimics the complexity and scalability of
industrial IoT networks. It includes several normal and cyber-
attack events from network traffic, making it an ideal choice
for our experiments.

In the following sections, we will explain how we utilized
these datasets in our experimental setup and discuss the results
obtained.

B. Experimental Setup

We have utilized PyTorch as the deep learning frame-
work for our model. The experiment was conducted on a
system equipped with an 11th Gen Intel(R) Core(TM) i7-
1185G7 @ 3.00 GHz 1.80 GHz and 16 GB RAM. During
the preprocessing phase, both datasets underwent several key
transformations, including the removal of duplicate records,
normalization of feature values, and elimination of redundant
features.

TABLE I: Hyperparameters used in the

DSVDD_CAE model
Hyperparameter Value
Input Dimension! 124/75
Hidden Dimension 64
Latent Dimension 32
Batch Size 32
Learning Rate 0.001
Epochs 10
Optimizer Adam
Lambda (Contractive loss coefficient) 0.0001

Alpha (Sphere-Reconstruction loss weighting) 0.1
Momentum (for updating c) 0.1

! The Input Dimension is 124 for ToN-IoT and 75 for
IoTID20 dataset.

The dataset was then partitioned into three sections: training,
validation, and testing subsets. The training subset consists
solely of normal samples (labeled as 0). For the validation
and testing subsets, we ensured a balance with 90% normal
samples (labeled as 0) and 10% anomalous samples (labeled
as 1) [22]. The DSVDD-CAE model was configured with
an input dimension aligning with the number of features
in the respective dataset (124 features for TON-IoT and 75
features for IoTID20), a hidden dimension of 64, and a latent
dimension of 32. The detailed hyperparameters are presented
in Table 1.

In the training phase of the DSVDD-CAE model, the center
c and radius R of the hypersphere are initialized at the onset
and updated after each epoch. Initially, the center c is set to
the mean of the latent representations of the training data, and
the radius R is established to encompass all data points in the
training set by setting it to the maximum distance from c to
any data point [4].

During the training, the center c is updated iteratively to
better adapt to the data distribution. Specifically, after each
epoch, a new center ¢,y is computed as the mean of the latent
representations of the data. The updating formula for the center
is given by:

Cnew = (1—momentum)cola-+momentum-mean (latent representations)

where the momentum hyperparameter (set to 0.1 as per
Table I controls the rate of updating c, providing a balance
between stability and adaptability to new data distributions
[4].

The model’s learning process is further refined by the
Learning Rate, Epochs, and Optimizer hyperparameters, set to
0.001, 10, and Adam respectively in Table I. These parameters
control the speed of learning, the number of iterations, and the
optimization algorithm used to minimize the loss function.

The Contractive loss coefficient and Sphere-Reconstruction
loss weighting, represented by Lambda and Alpha hyperpa-
rameters respectively in Table I, are crucial for the computation
of the overall loss during training [3]. These values, 0.0001 for
Lambda and 0.1 for Alpha, help in balancing the contribution
of the contractive loss and the reconstruction loss, ensuring the



model learns a robust representation of the data. The radius
(R) is set to the maximum distance of any data point from the
initialized center (c), ensuring that all training data points in
the latent space are surrounded.

C. Evaluation Metrics

In our research, we have adopted several evaluation metrics
to assess the performance of our anomaly detection models.
Given the nature of anomaly detection, where the number
of anomalous samples is typically smaller compared to the
normal samples, traditional metrics such as accuracy may not
provide an ideal evaluation [22]. Therefore, we have chosen
to use the following metrics:

o Area Under the Receiver Operating Characteris-
tics curve (AUC): The AUC measures the entire two-
dimensional area underneath the entire ROC curve from
(0,0) to (1,1). AUC provides an aggregate measure of per-
formance across all possible classification thresholds. It
is particularly useful when we need to compare different
models.

« Precision: Precision measures the proportion of predicted
positives that are actually positive. It is calculated as

Precision = TPTJF%. High precision indicates a low
rate of false alarms.

o Recall: Also known as sensitivity or TPR, recall mea-
sures the proportion of actual positives that are correctly
identified. It is calculated as Recall = 7p-7-

e Accuracy: Despite its limitations in this context, accuracy
can still provide some insights. It measures the proportion
of total predictions that are correct. It is calculated as
Accuracy = %.

o Fl-score: The Fl-score combines precision and recall
into one metric by using their harmonic mean. It provides
a balanced measure that equally weighs the significance
of both precision and recall, offering a comprehensive

view of model performance. It is calculated as F'1 —
__ 2xPrecision*Recall
score = Precision+Recall

These metrics together provide a comprehensive evaluation
of our anomaly detection model’s performance.

Method Precision  Recall Fl-score  Accuracy
KMeans 84.77% 72.19%  76.28% 88.92%
OCSVM 91.34% 76.38% 81.35% 91.29%
Isolation Forest 86.86% 83.52% 77.89% 89.68%
Proposed Method 98.77% 99.74%  99.25% 99.57%

TABLE II: Comparison of evaluation metrics for different
methods on the TON-IoT dataset.

D. Results and Discussion

We evaluated our DSVDD-CAE model on two distinct
datasets, TON-IoT and IoTID20, to determine its effective-
ness in detecting anomalies across different IoT networks.
The evaluation metrics—accuracy, precision, recall, and F1-
score—highlight the model’s robust performance on both
datasets. Specifically, on the TON-IoT dataset, our model

Method Precision  Recall Fl-score  Accuracy
KMeans 66.13% 66.16%  66.15% 87.81%
OCSVM 69.40% 69.43%  69.41% 88.98%
Isolation Forest 70.51% 68.95% 69.68% 89.50%
Proposed Method 98.25% 99.80%  99.01% 99.64%

TABLE III: Comparison of evaluation metrics for different
methods on the [oTID20 dataset
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Fig. 2: AUC Score Comparisons for both datasets

achieved an accuracy of 99.57%, precision of 98.77%, recall
of 99.74%, and Fl-score of 99.25%, as tabulated in Table
II. Similarly, on the IoTID20 dataset, our model exhibited an
accuracy of 99.64%, precision of 98.25%, recall of 99.80%,
and Fl-score of 99.01%, as detailed in Table III.

In addition to these primary metrics, we calculated the
AUC score for both datasets. Given that our evaluation dataset
contains only 10% anomalies, the AUC score effectively
measures our model’s performance, minimizing the influence
of class imbalance between normal and anomalous samples.

We conducted a comparative analysis against commonly
used anomaly detection methods like KMeans [25], Isolation
Forest [26], and OC-SVM [27]. Our DSVDD-CAE model sig-
nificantly outperformed these methods, achieving higher F1-
scores of 99.25% and 99.01% on the TON-IoT and I0TID20
datasets respectively, as shown in Tables II and III. The supe-
riority of our model is further illustrated in Figure 2, which
compares the AUC scores among different methods. On the
IoTID20 dataset, our model’s performance was approximately
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Fig. 3: Confusion Matrices for Anomaly Detection on ToN-
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43.75% ahead of the next best method, OCSVM. Similarly, for
the TON-IoT dataset, our model showcased an improvement
of roughly 25.58% over OCSVM.

Furthermore, we evaluated our model using confusion ma-
trices for both datasets, illustrated in Figures 3a and 3b. For the
TON-IoT dataset, the confusion matrix reveals a true positive
rate of 100%, a true negative rate of 99.48%, and a slight
false positive rate of 0.52%. Conversely, for the ToTID20
dataset, our model achieved a true positive rate of 100% and
a true negative rate of 99.60%, with a false positive rate
of 0.40%. These results highlight our model’s capability in
accurately identifying both normal and anomalous instances
across different IoT datasets, further substantiating the earlier
discussed precision, recall, Fl-score, and accuracy values.

V. CONCLUSION

In this paper, we present a novel Deep Learning-based
Intrusion Detection model based on an anomaly detection
objective to detect anomalies in IoT networks. Our proposed
framework, DSVDD-CAE, is a combination of Deep Sup-
port Vector Data Description and Contractive Autoencoder
which can efficiently model normal data and detect anomalies
deviating from the usual pattern. The experimental results

demonstrate the effectiveness of our approach on two different
datasets: the ToN-IoT and IoTID20. On the ToN-IoT dataset,
our model achieved a precision of 98.77%, recall of 99.74%,
Fl-score of 99.25%, and an accuracy of 99.57%. Similarly, on
the IoTID20 dataset, the proposed model reached a precision
of 98.25%, recall of 99.80%, Fl-score of 99.01%, and an
accuracy of 99.64%. The comparison among other baseline
models ensures the superiority of our model’s performance,
showcasing its potential in significantly advancing [oT security
through proficient anomaly detection. Moreover, our model ex-
hibits robustness by maintaining superior performance across
different datasets, whereas traditional methods do not show
the same level of robustness, emphasizing the advantages of
our DSVDD-CAE model in diverse IoT security scenarios.
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