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Abstract

The global communication infrastructure of the Internet is formed by tens of thousands of Autonomous Systems (ASes) connecting
various organizations and individuals together. In the last two decades researchers have developed many techniques to infer the
topology of individual ASes as well as the whole Internet at the interface, router, subnet, point of presence and AS levels. In this
study we extend the AS level Internet topology maps by introducing cross-AS (X-AS) topology maps. X-AS maps capture both
ASes and cross connections between the ASes observed at the network layer. We propose a set of techniques to infer X-AS topology
maps by employing datasets obtained through common tools such as traceroute, ping and BGP data collectors. X-AS maps allow us
to go beyond the simple AS level graphs and abstract the topology of the Internet as a multigraph supporting multiple connections
among the ASes. We verify the proof of concept using several research and commercial networks and investigate various features
of the Internet’s X-AS map and its multigraph representation. We believe that X-AS Internet topology maps will allow us to (i) gain
further insight into the structural and operational characteristics of the Internet; (ii) enhance current and future IP stack protocols;
(iii) optimize networking infrastructures; and (iv) improve synthetic network generators and simulation tools.
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1. Introduction

The Internet is a highly engineered, large scale, decentral-
ized network of networks serving billions of people worldwide.
Individuals, companies, educational institutions and govern-
ment agencies use the Internet for communication, entertain-
ment, marketing, distance education, citizen participation and
administration. The advent of new applications and enabling
technologies such as cloud computing and Internet of Things
clearly demonstrate that this trend will only grow in the future.

Having a global topology map of the Internet allows net-
work researchers to understand the dynamics of the Internet
in practice; guides network operators to enhance the reliabil-
ity and security of their networks; allows network engineers to
improve the efficiency of their systems; and helps developers to
develop topology aware applications, among others [1]. There-
fore, the communication infrastructure of the Internet has re-
ceived a great deal of attention from the researchers over the
last decades [1, 2]. Internet’s communication infrastructure
is formed by tens of thousands of autonomous systems con-
nected to each other. A group of networks managed by one
or more operators under a well defined routing policy is called
an Autonomous System (AS) in the Internet. Autonomous Sys-
tems (ASes) are identified by unique AS numbers. They are
connected to each other in different forms, i.e., customer-to-
provider (c2p), peer-to-peer (p2p) and sibling-to-sibling (s2s),
to achieve the “global” Internet communication [3, 4]. Indi-
vidual users, small businesses and ASes located at the edge of
the Internet participate in the global infrastructure by means of
other ASes called Internet Service Providers (ISPs). Typically,

ISPs are business entities providing Internet access service to
their customers while getting the same service from one or more
upstream ISPs. At the core of the Internet, a small number of
ISPs peer with each other through settlement-free interconnec-
tions to glue the whole communication infrastructure together.

The ASes forming the communication infrastructure of the
Internet cooperate with each other to carry traffic from one host
to another. Typically, the traffic passes through several inde-
pendent ASes until it reaches to the final destination. How-
ever, these ASes also compete with each other to increase their
market share by providing better services and expanding into
new regions. Each AS independently oversees its own network,
yet achieving a global level of surveillance requires an Inter-
net map capturing both ASes and the cross connections among
them. Mapping cross-AS connections is particularly important
because it allows us (i) to detect congestion points which mostly
occur on the links between ASes [5]; (ii) to analyze failures and
determine reliability bottlenecks in the Internet [6]; (iii) to mit-
igate the impact of attacks targeting BGP speaking routers [7];
(iv) to make provisions for attacks targeting inter-AS connec-
tions [8, 9]; (v) to leverage the quality of VoIP services and
reduce the traffic overhead [10]; and (vi) to optimize server de-
ployment in content delivery networks [11].

On the contrary, AS level Internet topology maps abstract the
topology as a graph G = (V, E) where the vertex set, V , corre-
sponds to the ASes and the edge set, E, represents the logical
relations between the ASes. Figure 1a shows an example AS
level Internet topology graph consisting of ten ASes along with
their logical links. Although AS level graphs, annotated with
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Figure 1: Simple graph and multigraph derived from an example cross-AS (X-AS) topology map

business relationships, are suitable for studying the economics
of the Internet, they often fall short in analyzing reliability, rout-
ing, efficiency and robustness of the Internet. Because, reducing
the Internet topology to a simple graph simply misses parallel
(multiple) connections among the ASes [1, 12, 2]. In reality,
the ASes in the Internet span over various geographic regions
and often, cover the same regions in part or in whole. More-
over, they physically connect to each other at multiple colo-
cation centers or Internet eXchange Points (IXPs) to exchange
traffic and routing information.

A proper abstraction of the Internet topology would be a
multigraph G = (V, E, f ) where the vertex set, V , corresponds to
the ASes, the edge multiset, E, represents the cross connections
between the ASes and f : E → {(vi, v j) : vi, v j ∈ V, vi , v j} is
a function returning the endpoints of the edges to support par-
allel edges between two ASes. Figure 1b shows a multigraph
demonstrating cross-AS connections for the same ASes given
in Figure 1a. Obviously, deriving the multigraph in Figure 1b
requires constructing a topology map that includes ASes, the
cross-connections between the ASes and an abstraction for the
endpoints of the connections. Figure 1c shows an example In-
ternet topology map where the ten ASes in Figures 1a and 1b
are connected to each other via multiple border/edge routers at
various facilities. Note that the topology map in Figure 1c can
be used to generate both the simple graph in Figure 1a and the
multigraph in Figure 1b.

In this study, we introduce cross-AS (X-AS) Internet topol-
ogy maps which capture both ASes and cross-AS connections
observed at the network layer in the Internet. Multiple inter-
AS connections between pairs of ASes have been studied in
different contexts. In [13] the authors use DNS-based geoloca-
tion to map the PoPs of 65 ISPs to their corresponding cities
to study the impact of intra and inter-connections on path in-
flation. In [14] the authors use a geographical database to map
the external links of routers to develop a model describing the
US Internet backbone topology. In [15] the authors use tracer-
oute and reverse DNS to map IP addresses to IXPs to reveal the
participants of IXPs and study their characteristics. In [16] the
authors use DNS-based geolocation and a geolocation database
to determine inter-domain links in path traces to study hybrid
and partial business relations among ASes. Moreover, multi-
graph representation of the Internet topology is pointed in dif-
ferent survey works [1, 12]. However, this is the first study
solely focusing on the cross-AS Internet topology maps and
their multigraph representations, to the best of our knowledge.

In this study, we systematically combine traceroute data analy-
sis, BGP advertisements, DNS-based geolocation, Round-Trip
Time (RTT) delays and geolocation databases to map multiple
connections between ASes and achieve a multigraph represen-
tation of the Internet at the AS level. We define a cross-border
interface (X-BI) as an interface (or an IP address) that belongs
to a border/edge router of an AS. We use traceroute datasets
and IP address to AS mapping tools to extract X-BIs that appear
in path traces where the paths switch from one AS to another.
Then, we apply a set of techniques based on DNS names, geolo-
cation databases, BGP advertisements and traceroute datasets
to accurately cluster X-BIs into X-BI nodes. We define an X-
BI node as a set of X-BI interfaces located in the same facility
within a particular AS regardless of the border routers accom-
modating the X-BIs. X-BI nodes allow us to represent the end-
points of parallel connections between the pairs of ASes. In this
study, our main objective is to capture multiple connections be-
tween pairs of ASes. Therefore, grouping the X-BIs into X-BI
nodes rather than individual routers serves for the purpose with-
out complicating the process. Lastly, we exploit traceroute and
BGP datasets to discover cross connections between the X-BI
nodes. Note that the techniques used in this study are based
on the network layer data. Therefore, the cross connections be-
tween the X-BI nodes are network layer (layer-3) abstractions
of the physical connections implemented as point-to-point links
or Local Area Networks (LANs) via switches at the lower lay-
ers. The final X-AS map, X = (N,C), consists of a set of X-BI
nodes, N, and a multiset of X-BI connections, C.

We conducted several experiments not only to validate our
approach but also to analyze various features of X-AS maps
and the resulting multigraphs. We used three research networks,
Internet2, GÉANT and ULAKNET and nine large scale com-
mercial networks belonging to Cox, AT&T, CenturyLink, Co-
gent, Cox, Deutsche Telekom, Hurricane Electric, Level3 and
Tata Communications to validate our approach. Our experi-
mental results show that the X-AS map successfully captures
the X-BI nodes belonging to both research and commercial net-
works. The X-AS topology map covers 84.9% relationships
among 43,386 ASes where the coverage is 100% for 78% of
the ASes. Our X-AS Internet topology map consists of 69,573
X-BI nodes distributed over 43,386 ASes. Majority of the ASes
have only one X-BI node whilst the maximum number of X-BI
nodes per AS is 506. We demonstrated that X-BI node distribu-
tion follows power law in the tail with a statistically significant
p-value. The X-BI nodes in the X-AS map has 558,840 con-
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nections between 69,573 X-BI nodes. The X-BI node degree
(number of connections to other X-BI nodes) changes between
1 to 4,171 and follows power law in the tail as well. Finally, we
extracted an AS level multigraph from our X-AS Internet topol-
ogy map. We analyzed both AS degree distribution and assorta-
tive mixing by degree in the multigraph. Our results show that
there is a strong correlation between low degree and high de-
gree ASes whereas medium degree ASes are correlated to both
low degree and medium degree ASes.

The rest of the paper is organized as follows. Section 2
presents the background and motivation. We introduce the de-
tails of our approach in Section 3. In Sections 4, 5 and 6 we
validate our approach, present experimental results and dis-
cuss the limitations of our approach, respectively. Finally, Sec-
tions 7 and 8 present the related work and conclude the study,
respectively.

2. Background and Motivation
In spite of the known benefits of having a global scale topol-

ogy map of the Internet, many network operators do not share
their topologies due to security and/or business concerns. Nev-
ertheless, researchers have developed many techniques to infer
the topology maps of individual ASes as well as the whole In-
ternet at the interface, router, subnet, PoP and AS levels in the
last two decades [1, 2, 17, 18, 19].

A router is a device that forwards a packet toward its des-
tination in packet switching networks. Routers are connected
to multiple networks through different interfaces. Usually each
interface is assigned a unique IP address. Interface level topol-
ogy mapping aims to discover the connectivity between IP in-
terfaces. Figure 2a shows an example interface level topology
map. In the figure, the circles show IP addresses and the links
present connections between the routers hosting these IP ad-
dresses. Although this type of maps are easy to construct, they
do not have much use.

Identifying the interfaces that belong to the same router
through their IP addresses allows us to construct Internet topol-
ogy maps at the router level. Router level mapping groups the
interfaces according to their routers and infers the connections
between these routers. Figure 2b shows an example router level
topology map. In the map, the ovals represent the routers and
each link represents a connection between two routers. Many
techniques have been suggested in the literature to discover the
IP addresses assigned to the same router [20]. However, the
problem is still an open problem due to the limited network
support, rate limiting practices and scalability issues [21, 22].

A Point of Presence (PoP) in the Internet is defined as a set
of cooperating routers that belong to the same AS located in
the same facility [18]. PoPs create the backbone infrastruc-
tures of ISPs and allow those networks to extend their services
geographically. As shown in figure 3, PoPs contain several
types of routers including core, distribution, access, service
and border [23]. Core routers mediate the traffic between the
routers in a single facility as well as transit the traffic between
the PoPs of the same AS. Access routers connect user net-
works to the rest of the Internet through the distribution routers.
Distribution routers distribute the traffic coming from/to core
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routers to/from access routers. Service routers transmit the traf-
fic from/to service hosts such as web hosting, email and DNS
servers. Lastly, BGP speaking border routers connect differ-
ent autonomous systems to each other by carrying data and/or
control traffic. PoP level Internet topology maps cluster the
routers/interfaces located in the same facility per AS. Figure 2c
shows an example PoP level topology map. In the map, each
heptagon corresponds to a PoP and each link represents a con-
nection between two PoPs whether those PoPs belong to the
same AS or not. PoP level mapping studies typically employ
path traces to find the interface IP addresses and geolocation
databases to assign those interfaces to their locations. Never-
theless, capturing the backbone connections within an AS is a
challenging task because it requires carefully crafted traceroute
queries per AS to increase coverage while reducing the probing
overhead [17, 24] and probing the backbone topology of ISPs
is more prone to packet filtering [25].

AS level topology maps represent autonomous systems as
nodes and the business relations between them as links. These
maps typically label the links according to the business relations
between their induced ASes as customer-to-provider, peer-to-
peer and sibling-to-sibling [3]. Figure 2d shows an example
AS level topology map. In the map, each cloud corresponds to
an AS and the links represent the business relations between the
ASes. AS level maps hide the connection details between the
ASes because a business relation can be implemented by mul-
tiple connections at different geographic locations and between
multiple routers/PoPs. On the other hand, AS level maps are
suitable for BGP path analysis as well as Internet economics.

Figure 2e superimposes all maps to provide an integrated net-
work view. In the figure clouds, heptagons, ovals and small cir-
cles represent ASes, PoPs, routers and interfaces, respectively.
The interfaces belonging to border routers are shown in dark
color.

An example X-AS topology map, introduced in this study,
is shown in Figure 2f. In the figure, rhombuses correspond to
X-BI nodes, dark circles inside the rhombuses represent X-BIs
and the links between the XBI nodes show the cross-AS con-
nections observed at layer-3. A cross-border interface (X-BI)
is an interface, represented by an IP address, which belongs to
a border/edge router of an AS. An X-BI node is a set of X-BI
interfaces located in the same facility within a particular AS re-
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Figure 4: An outline of the methods

gardless of the border routers accommodating the X-BIs. The
main focus of X-AS maps is the cross connections between the
ASes rather than the backbone connections within the individ-
ual ASes. In the following we present the details of X-AS In-
ternet topology mapping.

3. X-AS Internet Topology Mapping

In this section, we present several techniques to infer cross-
border interfaces (X-BIs), cluster them into cross-border inter-
face nodes (X-BI nodes) and finally construct cross-AS (X-AS)
maps. We construct X-AS maps in five steps as shown in Fig-
ure 4.

1. IP to AS Mapping: In this step, we map the IP addresses
collected in traceroute and BGP datasets to their corre-
sponding ASes.
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Algorithm 1 X-BI Identification
Input: traceDatasets . traceroute datasets
Output: X-BI S et . Set of X-BIs

1: for all traces f rom traceDatasets do
2: trace is an array o f IP addresses in a traceroute
3: IP1 = trace.get(0)
4: AS 1 = f indAS N(IP1)
5: for i = 1 to trace.length − 1 do
6: IP2 = trace.get(i)
7: AS 2 = f indAS N(IP2)
8: if AS 1 and AS 2 not equal to ′NA′ then
9: if AS 1 not equal to AS 2 then

10: X-BI S et.add(IP1)
11: X-BI S et.add(IP2)
12: end if
13: end if
14: IP1 = IP2
15: AS 1 = AS 2
16: end for
17: end for

2. X-BI Identification: In this step, we extract the X-BI IP
addresses that appear in BGP advertisements and switch
from one AS to another AS in path traces.

3. X-BI Geolocation: In this step, we geolocate the X-BIs
extracted from the previous step by applying the following
techniques.

(a) DNS-GeoDB based geolocation

(b) Majority GeoDB based geolocation

(c) Sandwich method geolocation

(d) RTT-based geolocation

(e) Singular GeoDB based geolocation

4. AS Based X-BI Node Clustering: In this step, we cluster
the X-BIs of ASes into X-BI nodes with respect to their
geolocations.

5. X-AS Map Construction: In this step, we use traceroute
and BGP datasets to find the links between the X-BI nodes
generated in the previous step. The final X-AS map, X =

(N,C), consists of a set of X-BI nodes, N, and a multiset
of X-BI connections, C.

In step 1, we map all unique IP addresses observed in tracer-
oute and BGP datasets to their corresponding ASes. We use
IPv4 Routeviews prefix to AS mappings dataset (pfx2as) ob-
tained from CAIDA [26]. In step 2, we identify the IP addresses
that represent the cross-border interfaces (X-BIs). Remember
that an IP address is an X-BI if it appears immediately before
or after an IP address that belong to another AS in path traces.
Put in other words, it is part of a connection between two ASes.
We process the successive IP address pairs that appear in path
traces and label them as X-BIs if the pair switches from one AS
to another AS. We use iPlane [27] and CAIDA [28] traceroute
datasets collected from multiple vantage points.

Algorithm 1 presents X-BI identification using traceroute
datasets. The algorithm requires a set of path traces as input.
It returns the IP addresses that are X-BIs. The algorithm parses
each path trace into a path trace array at line 2. At lines 3-4,

the algorithm gets the first IP address in the array and finds its
AS number. At lines 6-7, the algorithm gets the next IP address
and finds its AS number. At lines 8-13, the algorithm adds the
IP addresses as X-BIs in case their AS numbers change. Lines
14 and 15 advance the IP addresses in the array.

After identifying X-BIs from traceroute datasets, we expand
the list using the BGP datasets. We extract IP addresses given
in the ”NEXT HOP” fields in our BGP datasets. Since the next
hop IP addresses typically belong to border routers, they are X-
BIs as well. We use RIS RIPE [29] and RouteViews [30] BGP
datasets.

In step 3, we geolocate X-BIs by applying multiple tech-
niques in the following order: DNS-GeoDB based geolocation,
majority GeoDB based geolocation, sandwich method geoloca-
tion, RTT-based geolocation and singular GeoDB based geolo-
cation.
DNS-GeoDB based geolocation: Although DNS has lim-
ited support, it is still one of the most valuable informa-
tion that directly comes from the ASes. ASes typically en-
code geographic information in their DNS naming conventions.
To illustrate, SprintLink uses the naming convention ’sl-gw5-
fw.sprintlink.net’ for its gateways which denotes ’SprintLink
Gateway 5 router in Fort Worth, TX’ [31]. On the other hand,
DNS naming conventions are not enforced and may vary from
one ISP to another. UNDNS is a tool for extracting geoloca-
tion information from DNS names. It is developed as part of
the RocketFuel project [17] and improved further by the iPlane
project [32]. During this study, we improved their key dataset to
extend the coverage of the DNS names. We extract geolocation
information from DNS names by using UNDNS. In addition,
we verify the DNS geolocation information via our geoloca-
tion databases to reduce the potential DNS misnaming distor-
tion [33]. We use the commercial version of “DB-IP IP ad-
dress to location” database [34] and the free versions of “Max-
mind GeoLite2 City” [35] and “IP2Location DB5 Lite” [36]
databases.
Majority GeoDB based geolocation: The unresolved X-BIs
are resolved by geolocation database majority voting. Basi-
cally, we collect the geolocation from all three databases and
assign a geolocation to an X-BI if at least two databases agree
on the geolocation.
Sandwich Method geolocation: We apply our sandwich
method to resolve the remaining X-BIs. The sandwich method
locates unresolved X-BIs appearing in path traces and checks
the two IP addresses that immediately appear before and after
an X-BI. If these two IP addresses are at the same location then
the X-BI is at the same location as well. We assume that it is
unlikely for a packet to visit a city and then come back to the
same city after traversing an intermediate city.
RTT-based geolocation: To resolve the geolocation of the re-
maining unresolved X-BIs, we collect the resolved IP addresses
that appear before or after each X-BI in all path traces. We as-
sume that if the RTT time difference between the X-BI and a
resolved IP address is shorter than a threshold, 3 ms, they both
are located in the same city. However, if any other resolved IP
address suggests a different location, we ignore this method and
leave the X-BI as unresolved.
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Algorithm 2 RTT-based Geolocation
Input: traceDatasets . traceroute datasets
Input: X-BI . unresolved X-BI
Input: threshold
Output: X-BI Location . resolved or unresolved X-BI

1: get all IP pairs (IP1,X-BI) and (X-BI,IP2) from traceDatasets
where IP1 and IP2 locations are known

2: for all pairs do
3: if X-BI.RTT − IP1.RTT < threshold then
4: loc.insert(IP1.location)
5: end if
6: if IP2.RTT−X-BI.RTT < threshold then
7: loc.insert(IP2.location)
8: end if
9: if loc contains different locations then

10: unable to resolve X-BI
11: else
12: if loc contains same place more than once then
13: resolve X-BI
14: else
15: unable to resolve X-BI
16: end if
17: end if
18: end for

Figure 5: Example X-BI node connection decisions w.r.t. the BGP dataset

Algorithm 2 gives the pseudocode for the RTT-based geolo-
cation method. It requires the traceroute datasets, an unresolved
X-BI and a threshold value. It returns the geolocation of the
X-BI if the algorithm successfully resolves it. At line 1, the
algorithm extracts the IP pairs (IP1, X-BI) and (X-BI, IP2) in-
volving the input X-BI such that the preceding or succeeding IP
addresses are resolved. At line 2, the algorithm iterates through
IP pairs. It checks the RTT time difference between each pair
at lines 3 and 6. If the RTT difference is less than the threshold,
the algorithm inserts the location into the ’loc’ vector. At line
9, it checks if the ’loc’ vector contains different locations. If the
same location is reported by more than one IP addresses, the al-
gorithm returns the location. Our empirical results suggest that
a 3ms threshold value reduces false positives while allowing
false negatives to be resolved later (Section 5).
Singular GeoDB based geolocation: Lastly, we use one of
the extensive geolocation databases to locate the remaining un-
resolved X-BIs. We use Maxmind database [35] because it is
publicly available, extensive and frequently used in the litera-
ture.

In step 4, we cluster X-BIs of individual ASes into X-BI

Algorithm 3 X-AS Map link discovery by traceroute
Input: traceDatasets . traceroute datasets
Input: X-AS Map

1: for all traces f rom traceDatasets do
2: trace is an array o f IP addresses in a traceroute
3: for i = 0 to trace.length − 1 do
4: IP1 = trace.get(i)
5: IP2 = trace.get(i + 1)
6: if IP1 and IP2 are X-BIs then
7: XBINode1 = retrieveXBINode(IP1)
8: XBINode2 = retrieveXBINode(IP2)
9: if map.containsLink(XBINode1, XBINode2) then

10: doNothing
11: else
12: map.insertLink(XBINode1, XBINode2)
13: end if
14: end if
15: end for
16: end for

Algorithm 4 X-AS Map link discovery by BGP
Input: map . X-AS Map created by traceroute
Input: BGP . BGP datasets
1: for each link in BGP dataset do
2: obtain AS 1 and AS 2
3: if map.containsAS Link(AS 1, AS 2) then
4: doNothing
5: else
6: XBINodes1 = retrieveAllXBINodes(AS 1)
7: XBINodes2 = retrieveAllXBINodes(AS 2)
8: findIntersectingGeolocations(XBINodes1,XBINodes2)
9: if there is only one intersecting geolocation then

10: insert link between the corresponding X-BI nodes
11: end if
12: end if
13: end for

nodes with respect to their geolocations. Our assumption is that
each AS has at most one PoP in a city which contains border
router(s) to connect to other AS PoPs. Hence, if two or more
X-BIs belonging to the same AS are located in the same city,
then they are grouped into the same X-BI node. We created the
X-BI nodes of ASes by clustering their X-BIs according to their
city information.

Once we build the X-BI nodes, we find the layer-3 links be-
tween those nodes by using traceroute and BGP datasets in step
5. First, we use traceroute datasets to construct the initial map.
We check each X-BI pair. If we discover a traceroute link be-
tween two X-BI addresses, then we insert a link between the
related X-BI nodes in the X-AS map.

Algorithm 3 shows the pseudocode for X-AS Map link dis-
covery by traceroute. It requires the traceroute datasets as well
as the current X-AS map. Note that, initially the X-AS map
consists of only X-BI nodes without any links between them.
The algorithm uses traceroute to discover and insert the links
between X-BI nodes. At lines 1-2, the algorithm parses each
path trace into a trace array. At lines 4-5, the algorithm gets an
IP pair. It checks if the pair is an X-BI pair or not at line 6. If
both of them are X-BIs, then the algorithm retrieves their X-BI
nodes at line 7 and 8. At lines 9-13, the algorithm inserts a link
between the X-BI nodes accommodating the X-BI pairs if there
is no link between them.

In addition to the traceroute datasets, we incorporated BGP
datasets [29, 30] to improve the accuracy and coverage of our
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(a) Internet2 layer-3 PoPs (b) Internet2 X-BI nodes

Figure 6: Internet2 backbone map comparison

(a) GÉANT backbone map (b) GÉANT X-BI nodes

Figure 7: GÉANT backbone map comparison

maps by additional links. If a non-existing connection between
two ASes is reported in the BGP dataset, these two ASes should
have at least one connection at their X-BI nodes. We assume
that if the two ASes have at most one X-BI node in the same
city then, the connection should have been between these two
X-BI nodes. To illustrate, Figure 5 shows three ISPs, AS1, AS2
and AS3, providing Internet access service at the West Coast,
South and East Coast regions of the US. When we observe a
link between AS1 and AS2 in a BGP advertisement, we assume
that the connection occurs at the Phoenix X-BI nodes, because
the other X-BI nodes are located at distinct cities. On the con-
trary, when we observe a link between AS2 and AS3 in a BGP
advertisement, we cannot be conclusive. In Figure 5, AS2 and
AS3 have X-BI nodes at more than one cities, Atlanta and Mi-
ami, and the actual connection(s) might be at either one of the
cities or at both cities.

Algorithm 4 presents X-AS Map link discovery using the
BGP datasets. The algorithm requires the partial map produced
by algorithm 3 as input. At line 3, the algorithm checks if the
map contains a link between two ASes: AS 1 and AS 2. At lines
6 and 7, the algorithm retrieves the X-BI node sets of AS 1 and

AS 2, respectively. At line 8, the algorithm finds the intersecting
geolocations of the X-BI node sets. At lines 9-11, the algo-
rithm inserts a new link between the corresponding X-BI nodes
if there is only one intersecting geolocation.

4. X-AS Map Validation

One major challenge for network measurement and analysis
community has been research outcome validation. Most of the
validation methods in the literature are partial or indirect, be-
cause ISPs do not share the complete details of their networks,
mainly due to security and business concerns. In the follow-
ing, we designed two experiments to validate our X-AS topol-
ogy maps. The first experiment uses PoP level maps of major
research networks and commercial ISPs to validate the X-BI
nodes only. The second experiment uses AS level maps to vali-
date the existence of the links between the X-BI nodes.

4.1. X-BI Node Validation

We acquired PoP level topology maps of major research net-
works and several large scale ISPs from their official websites.
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(a) ULAKNET backbone map (b) ULAKNET X-BI nodes

Figure 8: ULAKNET backbone map comparison

(a) Cox national backbone map (b) Cox X-BI nodes

Figure 9: Cox backbone map comparison

These maps demonstrate the backbone infrastructures of their
networks, hence they do not show any cross-AS connections.
However, the X-BI nodes mapped to geographic locations in X-
AS maps correspond to PoPs that accommodate border routers.
Therefore, we compare the X-BI nodes to the PoPs of several
networks, below.

We first examined Internet2 (AS11537, AS11164), an aca-
demic network based in the United States. Figure 6a presents
Internet2 network infrastructure map. In the figure, the blue cir-
cles present Internet2’s layer-3 service PoPs. Figure 6b shows
the Internet2 X-BI nodes that we inferred as part of our X-AS
Internet topology map. The figures verify that our X-AS map-
ping approach successfully identified the X-BI nodes of Inter-
net2 except for the two overlapping PoPs in New York and Los
Angeles. Remember that our approach assumes that an AS has
at most one X-BI node at a city. That is, if an AS has more than
one PoP accommodating border routers in a city, their X-BIs
will be merged into a single X-BI node in our approach (Please
see Section 6 for the limitations).

Next, we examined the network infrastructure of
GÉANT (AS20965, AS21320), an academic network based
in Europe. Figure 7a shows GÉANT’s backbone topology

map. Figure 7b shows the X-BI nodes that we were able to
find in our X-AS map. This was the only topology map that
we experienced a significant amount discrepancy between the
published and inferred nodes. Investigating the case further
revealed that GÉANT reports its associate European National
Research and Education Networks (NRENs) in its backbone
topology map [37]. Moreover, some national research net-
works which have no physical GÉANT presence are shown
in the map. These networks connect to remote GÉANT
PoPs through leased circuits [37]. The PoPs belonging to
Finland, Iceland, Norway, Belarus and Sweden are part of
NORDUnet (the Nordic regional network) which is viewed
as an extension of GÉANT. The other PoPs such as Turkey,
Israel, Cyprus and Serbia belong to national research networks
connected to GÉANT PoPs through leased circuits. Hence, the
corresponding X-BI nodes do not appear as part of GÉANT in
the X-AS map. Nevertheless, our X-AS map captures all X-BI
nodes listed in the PoP decode table document that is publicly
available on GÉANT’s Network Operations website [38].

Third, we compared our map to ULAKNET (AS8517) be-
longing to Turkish academic network and information center.
ULAKNET provides high speed Internet service to universi-

8



0 10 20 30 40 50
Discrepancy(%)

0

10

20

30

40

50

60

70

80

F
re

qu
en

cy
(%

)

Figure 10: Discrepancy between X-AS map links and AS level map relations

ties and research institutions in Turkey. Figure 8a presents
ULAKNET backbone map. In the figure, there are 82 PoPs
scattered in Turkey. The map also shows that only three of these
PoPs connect ULAKNET to the rest of the Internet: Ankara,
Istanbul and Izmir PoPs. Figure 8b shows ULAKNET X-BI
nodes that we inferred as part of our X-AS Internet topology
map. Our X-AS topology map includes only the three X-BI
nodes having cross-AS connections.

In addition to the research networks, we compared our map
with several commercial ISPs. We examined AS22773 belong-
ing to Cox Communications based in the US. Figure 9a presents
Cox national IP backbone map. In the figure, there are 33 PoPs
scattered around the US. Figure 9b shows the Cox X-BI nodes
that we inferred as part of our X-AS Internet topology map. We
were able to find 30 X-BI nodes that geographically match the
PoPs of Cox. In figure 9a, there are three PoPs that do not ap-
pear in our X-AS map. Either those three PoPs do not connect
to any other AS or they are our false negatives. Unfortunately,
Cox operators did not respond to our inquiry to validate our
results.

We conducted the same experiment for the US maps of
AS7018 (AT&T), AS209 (CenturyLink), AS174 (Cogent),
AS6939 (Hurricane Electric), AS3356 (Level3), AS6453 (Tata
Communications) and AS3320 (Deutsche Telekom). We found
101, 69, 60, 27, 146, 15 and 18 X-BI nodes, respectively. Due
to space constraints, we provide these map visualizations along
with their X-BI node comparisions on our project website [39].

4.2. X-BI Link Validation

In this part, we compare the X-BI node connections against
the AS relationships dataset that we obtained from CAIDA [40].
The AS relationships dataset contains inferred business rela-
tions, customer-to-provider and peer-to-peer, between the ASes
in the Internet. These business relations are implemented as
physical connections at one or more facilities to exchange traf-
fic and routing information. X-BI to X-BI links in X-AS maps
also represent these connections observed at the network layer
of the IP stack. Our experimental setup assumes that if there is
an X-BI to X-BI link between two ASes in the X-AS map, then

0 1000 2000 3000 4000 5000 6000
Number of AS Relations
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Figure 11: Discrepancy between X-AS map links and AS level map relations

there must be a reported relationship in CAIDA’s AS relation-
ships dataset. We are aware that this experimental setup is not
ideal, yet it is practical for validating our proof of concept given
that ISPs do not publish their detailed, ground-truth topologies.

Figure 10 shows an equal-width binned histogram of the dis-
crepancies (in terms of percentages) between CAIDA’s AS level
map and our X-AS map connections. The X-AS map is 100%
in agreement with CAIDA’s AS level map for 78% of the ASes.
The average cross-AS link agreement is 84.9% for the entire X-
AS topology map. The maximum discrepancy that we observed
is 50%. Analyzing the cases further shows that the majority of
these ASes have only two relations and we were able to cap-
ture only one of the two relations in our X-AS maps. Yet, only
3% of ASes have a discrepancy of 40% or more. We observed
a similar behavior at 33% discrepancy band which constitutes
6.2% of the ASes. Further analysis has revealed that most of
these ASes have three relations in CAIDA’s AS level map and
we were able to capture only two of the three relations.

In addition, we separately examined the links incident on
the research and commercial networks that we analyzed in
the previous section. Figure 11 presents the discrepancy be-
tween CAIDA’s relationships and our X-AS map cross con-
nections. We observed 100%, 97.8% and 93.8% agree-
ment for Internet2 (AS11537, AS11164), GÉANT (AS20965,
AS21320) and ULAKNET (AS8517), respectively. As
for large scale commercial networks, we observed 100%
agreement for AS7018 (AT&T) and AS2273 (Cox), 98.8%
agreement for AS3320 (Deutsche Telekom), 98.5% agree-
ment for AS6453 (Tata Communications), 96.8% agree-
ment for AS6939 (Hurricane Electric), 95.8% agreement for
AS209 (CenturyLink), 93.1% agreement for AS3356 (Level3)
and 90.5% agreement for AS174 (Cogent).

5. Empirical Analysis

In this section, we first present the datasets used for con-
structing an X-AS Internet topology map. In the second part,
we investigate various features of the X-AS map. In the last
part, we build an AS level multigraph using the X-AS map and
examine the connectivity structure of the multigraph.
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Figure 12: X-BI taxonomy w.r.t. different data sources

5.1. Analysis of the Datasets

In the following we present the datasets used in this study
and examine the techniques introduced in Section 3.
Traceroute Datasets: We used iPlane [27] and CAIDA [28]
traceroute datasets in this work. IPlane and CAIDA datasets
contain more than 11 million (11,266,865) and 19 million
(19,275,509) path traces, respectively. We found 856,184
unique IP addresses in both datasets.
BGP Datasets: We used RouteViews [30] and RIS RIPE [29]
BGP datasets in this work. We were able to get 3,918 IP ad-
dresses from the RIPE dataset and 3,032 IP addresses from the
RouteViews dataset. Among those IP addresses, we observed
1,618 in both datasets.
IP2AS Mapping: We used RouteViews prefix to AS mapping
dataset (pfx2as) obtained from CAIDA [26]. We were able to
map 92% percent of the unique IP addresses (791,073) to their
corresponding AS numbers. We removed the remaining 8%
because our techniques, presented in Section 3, do not apply to
them.
X-BI Identification: We found 251,597 and 329,929 X-BIs in
iPlane and CAIDA datasets, respectively. Moreover, we ob-
served 5,332 X-BIs from the BGP datasets. Figure 12 shows
the taxonomy of X-BIs with respect to different data sources.
In total, we observed 397,124 unique X-BIs.
Geolocation Methods
DNS: We were able to resolve the geolocations of 16,650 X-
BIs which mostly belong to large scale ISPs. Although it cor-
responds to 4.19% of all X-BIs, it nicely complements other
geolocation techniques.
Geolocation Databases: In this work, we used three differ-
ent commercial geolocation databases. We applied majority
voting to resolve the remaining unresolved X-BIs. All three
databases agreed on 168,881 X-BIs out of 397,124 X-BIs. Only
two databases agreed on 139,326 X-BIs. In total, majority
voting successfully resolved 308,207 X-BIs which corresponds
77.61% of all X-BIs. DNS-GeoDB and majority GeoDB meth-
ods together resolved 81.8% of the X-BIs.

In order to resolve the remaining X-BIs, we found the geolo-
cations of all non-XBI IP addresses in our traceroute datasets
using the previous two geolocation techniques. Remember that,
our dataset consists of 856,184 unique IP addresses. We were
able to resolve the geolocations of 651,397 IP addresses (76%).
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Figure 13: RTT difference distribution

Sandwich Method Geolocation: The sandwich method lo-
cates unresolved X-BIs appearing in path traces and checks the
two IP addresses that immediately appear before and after an
X-BI. If these two IP addresses are at the same location, then
so is the X-BI. This technique resolved 14,314 X-BIs out of the
remaining 71,389 unresolved X-BIs.
RTT-based Geolocation:

We assume that if the round trip time difference between a re-
solved IP address and an X-BI is less than a 3ms threshold, then
they are at the same location. Figure 13 shows the distribution
of the RTT differences between consecutive traceroute IP ad-
dresses that are known to be located in the same cities via our
previous geolocation techniques. The distribution is positive
skewed with a median of 3.21 ms which is rounded to 3 ms in
our experiments. In an earlier work, Feldman and Shavitt use 5
ms RTT difference to extract IP subgraphs located in PoPs [18].
We use a more conservative threshold value to decrease false
positives, because false negatives are resolved further in our last
step. We were able to resolve an additional 47,138 X-BIs using
this method.
Singular GeoDB based Geolocation: Lastly, we used Max-
mind [35] geolocation database to resolve the remaining
9,937 (2.5%) unresolved X-BIs . At the end, all X-BIs were
mapped to a geolocation.

5.2. X-AS Map Analysis

In the following, we analyze the main components of the X-
AS map that we constructed using the datasets presented earlier.
The final X-AS topology map X = (N,C) consists of a set of
X-BI nodes, N, and a multiset of X-BI connections, C.

5.2.1. X-BI Node Analysis
Once we identify the X-BIs of the ASes and map them to

their geolocations, we cluster them into X-BI nodes with re-
spect to their geolocations as explained in Section 3. We found
69,573 X-BI nodes distributed over 43,386 ASes.

Figure 14 shows the X-BI node distribution over the ASes in
log-log scale due to the skewness in the tail. The x-axis shows
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Figure 14: X-BI node distribution over ASes

the number of the X-BI nodes per AS and the y-axis shows their
frequencies. The red line presents the power law in the tail.
In the figure, 34,995 (80.7%) ASes have only one X-BI node
(Please see Section 5.3 discussing stub ASes and backup links),
4,678 (10.8%) ASes have two X-BI nodes, 1,685 (3.9%) ASes
have three X-BI nodes and the remaining 2,028 (4.7%) ASes
have four or more X-BI nodes. In addition, Table 1 shows the
minimum, first quartile, second quartile (median), third quar-
tile, maximum, mean and standard deviation for the X-BI node
distribution.

Table 1: Summary statistics for the X-BI node distribution over ASes

Q0 Q1 Q2 Q3 Q4 Mean S tdDev
1 1 1 1 506 1.56 5.33

The linear pattern in Figure 14 suggests that the X-BI node
distribution follows power law in the tail. Formally, a quantity
follows power law if it is drawn from a probability distribution
p(x) such that p(x) ∝ x−k where 2 < k < 3 is called the scal-
ing parameter [41]. Power law distributions frequently appear
in man-made and natural networks. In general, power law in-
dicates that the observations with low values are much more
frequent compared to the observations with high values with a
proportional relative change. Figure 14 suggests that the ma-
jority of the ASes in the Internet have a very small number of
X-BI nodes, while only a small number of ASes have larger
numbers of X-BI nodes. This finding is consistent with the pre-
vious studies in the sense that the majority of the ASes in the
Internet are stub ASes [4] that do not span geographically (sin-
gle X-BI node), while a relatively small number of ASes span
over multiple geographical regions (many X-BI nodes).

However, power law distributions appearing in works using
traceroute datasets should be viewed with healthy skepticism
for statistical and measurement-based reasons [42]. Moreover,
the linearity in log-log plots is a necessary but not sufficient
condition for power law distributions. Therefore, we applied
power law hypothesis testing suggested in [41]. The hypothesis
test combines maximum-likelihood fitting methods along with
goodness-of-fit tests based on the Kolmogorov-Smirnov statis-
tic and likelihood ratios [41]. The hypothesis testing suggests
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Figure 15: X-BI node degree distribution

Table 2: Summary statistics for the X-BI node degree distribution

Q0 Q1 Q2 Q3 Q4 Mean S tdDev
1 1 2 4 4171 6.41 43.38

that there is not enough evidence to reject the power law tail in
the X-BI node distribution for xmin = 2 with p-value 0.475.

5.2.2. X-BI Link Analysis
In this part, we analyze the degree distribution of the X-BI

nodes in our X-AS map. We define the degree of an X-BI node
as the number of the links that it has to other X-BI nodes. Note
that, we discovered 434,924 X-BI node links using the tracer-
oute datasets and an additional 123,916 connections using the
BGP datasets.

Figure 15 shows the X-BI node degree distribution in log-log
scale. The x-axis shows the X-BI node degree and the y-axis
shows the frequency. The red line presents the power law in the
tail. In the figure, 21,358 (30.7%) X-BI nodes have degree one,
16,499 (23,7%) X-BI nodes have degree two, 8,744 (12.6%)
X-BI nodes have degree three and 22,972 (33%) X-BI nodes
have degree four or more. In addition, Table 2 shows the min-
imum, first quartile, second quartile (median), third quartile,
maximum, mean and standard deviation for the X-BI node de-
gree distribution.

Again, the X-BI node degree distribution exhibits power law
in the tail with scaling parameter k = 2.0049. Applying power
law hypothesis testing shows that there is not enough evidence
to reject the power law tail in the X-BI degree distribution for
xmin = 3 with p-value 0.563. Figure 15 suggests that the major-
ity of the X-BI nodes have very low degree, while only a small
number of X-BI nodes have higher degrees. The low degree X-
BI nodes can be attributed to the stub ASes which do not have
any customers or peers as well as no more than a few providers.
On the other hand, higher degree X-BI nodes belong to large
scale ISPs and content providers and they are located at major
cities including San Francisco, Stockholm and London. These
X-BI nodes have presence at significant colocation centers and
IXPs located in major cities which provide more opportunities
to establish transit and peer business links with other ASes.
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Figure 16: AS degree distribution

5.3. Analysis of AS level Multigraph

Using the X-AS Internet topology map X = (N,C), we gener-
ated a multigraph representation, G = (V, E, f ), of the topology
map where the endpoints of the edges correspond to the X-BI
nodes. In the following we first analyze the degree distribution
of the multigraph G. Next, we investigate assortative mixing by
degree in the multigraph.

5.3.1. AS Degree Distribution
We define the degree of an AS as the number of the con-

nections it has to other ASes including the parallel (multiple)
connections. Note that AS degree is different from X-BI node
degree because an AS may have more than one X-BI nodes.
Unlike simple graphs, the degree of a vertex in a multigraph
does not necessarily correspond to its unique neighbors due to
potential parallel edges. Yet, the degree is an upper bound for
the number of neighbors of a vertex.

Table 3: Summary statistics for the AS degree distribution

Q0 Q1 Q2 Q3 Q4 Mean S tdDev
1 1 2 5 26418 10.02 193.37

Table 3 shows the summary statistics for the AS level multi-
graph degree distribution. The median degree is two for the
ASes in our multigraph. 26.7% of the ASes have degree
one which means they are single-homed. Despite the excep-
tions, ASes are required to be multi-homed with at least two
providers. However, the second connections to alternative ASes
are typically backup links and more often they are not visi-
ble [12]. Although majority of the ASes are stub ASes in the
Internet and they do not have high degrees, we observe a small
number of large degree ASes up to 26,418.

Figure 16 shows the AS level multigraph degree distribution
in log scales. The x-axis shows the AS degree and the y-axis
shows the frequency. The red line presents the power law in
the tail. Figure 16 also suggests that the majority of the ASes
have very low degrees, while only a small number of ASes have
higher degrees. The low degree ASes correspond to the stub
ASes which do not have any customers or peers as well as no
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Figure 17: AS Assortativity

more than a few providers. On the other hand, a small number
of ASes span multiple geographical locations and have many
customers, providers and peers at multiple colocation centers
and IXPs. These ASes belong to major market players such as
Telianet, Level3 and Cogent Communications. The distribution
also has a power law tail for xmin = 3 with p-value 0.369.

5.3.2. AS Assortativity
Assortative mixing in graphs shows the preferences for a

graph’s vertices to attach to other vertices. In complex sys-
tems assortativity is often examined in terms of degree. If high
(low) degree nodes prefer to attach high (low) degree nodes in
general, the graph is said to be assortative. If high (low) degree
nodes prefer to attach low (high) degree nodes in general, the
graph is said to be disassortative. One way of looking at the as-
sortativity in graphs is examining the conditional degree-degree
distribution plots.

Figure 17 shows the conditional degree-degree distribution
using a heat map. In the figure x and y axes show the AS de-
grees in the multigraph denoted by k and k′, respectively. The
color encoded z axis shows the conditional distribution P(k′|k).
In the graph, all axes are given in logarithmic scales due to the
skewness toward large values. The conditional probability in-
creases from cold colors toward the warm colors. Figure 17
clearly shows that the ASes are not connected to each other
uniformly at random. We can visually break the figure into
five consecutive sections: [0, 1], (1, 1.6], (1.6, 2.8], (2.8, 3.7],
(3.7, 4.4]. The first section shows the ASes of degree 1 and
10. These ASes prefer to connect to low degree and high
degree ASes while slightly disfavoring medium degree ASes.
The ASes having degree 10 and 40 in the second section show
a stronger preference toward the low degree and high degree
ASes while avoiding connections to the medium degree ASes.
The ASes having degree 40 and 631 in the third section ex-
hibit preference toward lower degree ASes. They also have a
stronger tendency toward connecting to medium degree ASes
while they do not drastically prefer high degree ASes. The
ASes in the fourth section show a pattern similar to the ASes
in the third region; they have a stronger preference toward the
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low degree and high degree ASes. The very high degree ASes
in the fifth section are connected to the lower degree ASes and
some higher degree ASes while avoiding the medium degree
ASes.

The patterns we observe on the left and right sections can be
explained by high degree, large scale ASes offering better ser-
vices and competitive prices to lower degree, stub ASes. These
stub ASes prefer them as their main providers. The medium
size ASes in the middle on the other hand, are regional ASes
providing service to stub ASes in their regions as well as peer-
ing with similar size ASes to reduce their overall traffic costs.

6. Limitations and Discussions

Similar to other topology mapping works in the literature, X-
AS mapping has its own limitations. First, the accuracy and
coverage of the X-AS maps depend on the accuracy and cover-
age of the datasets used in X-AS map construction. In order to
increase our coverage, we used two distinct traceroute datasets
and two BGP datasets. To enhance our accuracy rate, we used
three different geolocation databases in addition to IP sandwich,
DNS and RTT-based geolocation techniques. Second, we as-
sume that an AS has at most one X-BI node at a city. In case an
AS has more than one PoP accommodating border routers in a
city, our approach merges them into a single X-BI node. Third,
X-AS maps capture connections observed at the network layer
(layer-3) which may be implemented as point-to-point links or
Local Area Networks (LANs) via switches at the lower layers.

ISPs use MPLS tunnels, typically in their backbone infras-
tructures, for traffic engineering, QoS assurance and/or remote
peering provisions. Although MPLS tunnels spanning over two
or more ISPs are technically possible, they are not adopted in
practice. Because, they complicate network management and
troubleshooting processes. However sibling ISPs, formed by
company buyouts and merges, may implement MPLS tunnels
spanning over the cross links between the sibling ASes. Don-
net et al. categorize MPLS tunnels into four types; explicit,
implicit, opaque and invisible [43]. Explicit and implicit tun-
nels do not purposefully hide the IP addresses in the tunnels,
hence they do not introduce any peculiarities into path traces.
On the other hand, opaque and invisible tunnels purposefully
hide the IP addresses in the tunnels. Regardless of their types,
MPLS tunnels implemented in the backbone infrastructures of
ISPs do not affect X-AS maps. Because, X-AS maps focus on
the cross connections between ASes rather than the connections
within the backbone infrastructures of the ASes. On the other
hand, opaque and invisible MPLS tunnels spanning over cross
links or involving border/edge routers may introduce invisible
subpaths in path traces. These invisible subpaths result in false
positive cross connections in X-AS maps while missing the true
cross connections.

Lastly, we were unable to map 8% (68,788) of the IP ad-
dresses in our dataset to their corresponding ASes. Please re-
member that the main objective of this study is to generate X-
AS maps which capture X-BI nodes and the cross connections
between them. Among these unmapped IP addresses, the ones
that are not X-BIs do not affect the accuracy or coverage of

X-AS topology maps. The ones that are part of the already-
inferred X-BI nodes or cross connections also do not affect
the accuracy and coverage of X-AS maps. On the other hand,
the unmapped IP addresses that belong to the endpoints of un-
known cross connections will be reflected as missing connec-
tions in X-AS maps. Although it is very unlikely, the ones that
collectively represent an unknown X-BI node will be reflected
as a missing X-BI node in X-AS maps.

Finally, the approaches presented in this work can be used for
PoP level Internet topology mapping as well. PoP level topol-
ogy maps require finding the backbone connections between
the PoPs of a single AS as well as the cross-AS connections
between the PoPs of different ASes. Capturing the backbone
connections within an AS is a more challenging task because
(i) it requires path traces entering into an AS through every PoP
and leaving the AS through every PoP [24] (ii) it necessitates
carefully crafted traceroute queries per AS to increase coverage
while reducing the probing overhead [17] and (iii) it is reported
that probing the backbone topology of ISPs is more prone to
packet filtering [25].

7. Related work

Many approaches have been introduced to derive the Inter-
net topology maps at the interface, router, subnet, PoP and AS
levels [1, 2]. Traceroute, ping and their variants are commonly
used to discover the IP addresses in the Internet [17, 44, 45].

Router level maps group the IP addresses according to
their routers along with the connections between these routers.
Grouping IP addresses based on the accommodating routers is
called IP alias resolution [20, 46]. Mercator [44] is a probe-
based IP alias resolver that depends on the similarity in source
IP addresses in probe responses. Ally [17] extends Mercator by
utilizing the IP identifiers in probe response packets to decide
on aliases. Radargun [47] employs velocity modeling scheme
to reduce Ally’s quadratic probing complexity. APAR [48] is
an inference-based alias resolver to resolve aliases among IP
addresses collected via traceroute.

A PoP is defined as a set of cooperating routers that belong
to the same AS and located in the same facility. PoP level maps
focus on the physical locations of the facilities as well as the
connections between these facilities. Rocketfuel project defines
a PoP as a collection of routers located in the same place [17].
Hence, they group routers into their geolocations by using DNS
information. Madhyastha et al. [32] improved Rocketfuel’s
DNS project by extending their key dataset. Shavitt and Zilber-
man have suggested a graph-based approach to infer PoPs [18].
Their idea is to find network motifs repeated in traceroute
datasets. In their work, they define a PoP as a set of IP inter-
faces. Yoshida et al. proposed a delay-based PoP finder method
for ISPs in Japan [25]. Rasti et al. [49] used eyeball ASes which
directly provides services to end-users to infer PoPs in an area.
Topology Zoo [50] and the Internet Atlas [51] projects suggest
using topology information provided by ISPs for mapping.

AS level topology maps capture ASes and the business re-
lations among the ASes. The related topology mapping tech-
niques can be categorized based on the source(s) that they em-
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ploy. Path trace based approaches use traceroute to collect path
traces and employ IP address to AS number mapping tech-
niques to build the links between the ASes. Chang et al. pro-
posed a method for discovering AS level connectivity by infer-
ring individual connections from the router level topology of
the Internet [19]. Mao et al. suggested heuristics to fix inaccu-
rate IP-to-AS mappings by using BGP and traceroute paths col-
lected from multiple vantage points [52]. Later, they proposed
a new approach based on dynamic programming to iteratively
improve IP-to-AS mappings [53]. More recently, Faggiani et al.
showed that using multiple traceroute infrastructures helps with
improving the completeness of AS level topology maps [54].
He et al. developed an approach which identifies additional AS
links by cross-reference and synthesis of BGP routing tables,
path traces and IRRs [55]. Khan et al. constructed an AS level
Internet topology map using BGP looking glasses [56]. Ma-
hadevan et. al [57] combine traceroute, BGP and WHOIS mea-
surements to create more accurate AS level maps. BGP routing
table based approaches passively collect BGP updates and use
the advertised paths to construct an AS level topology map of
the Internet. Most of the studies in this category not only focus
on mapping but also inferring the types of business relations
between the ASes. In her influential work [3], Gao classified
business relations between ASes into three groups (customer-
to-provider, peer-to-peer and sibling-to-sibling) based on the
assumption that AS level paths are valley-free, i.e., hierarchi-
cal. Other studies focused on the formalization of relation in-
ference and its complexity [58, 59]. More recently, Giotsas et
al. suggested a new algorithm to infer partial and hybrid rela-
tions between ASes [16].

In this study, we introduce Cross-AS (X-AS) Internet topol-
ogy maps which capture both ASes and the parallel connec-
tions between the ASes observed at the network layer. Such
maps allow us to abstract and study the topology of the Internet
as a multigraph. Although constructing router level and PoP
level Internet topology maps is more difficult and error prone,
they ideally provide a richer set of information compared to
the X-AS topology maps. X-AS maps neither capture individ-
ual routers, their interfaces and the connections among them
nor do they capture the backbone infrastructures of the ASes.
Compared to the AS level Internet topology maps, X-AS maps
capture multiple links among ASes instead of logical relations
among them.

8. Conclusions

The Internet is a highly engineered, large scale, decentral-
ized network of networks serving billions of people worldwide.
In the last two decades researchers have developed many tech-
niques to infer the topology of individual ASes as well as the
whole Internet at the interface, router, subnet, PoP and AS lev-
els. In this study, we introduced cross-AS (X-AS) Internet topol-
ogy maps which capture both ASes and the cross-AS connec-
tions observed at the network layer. We presented a set of tech-
niques that exploit multiple data sources (path traces, BGP ad-
vertisements, geolocation databases and DNS datasets) to con-
struct X-AS topology maps. We used three research networks,

Internet2, GÉANT and ULAKNET and nine large scale com-
mercial networks belonging to Cox, AT&T, CenturyLink, Co-
gent, Cox, Deutsche Telekom, Hurricane Electric, Level3 and
Tata Communications to validate our approach. Our experi-
mental results show that the X-AS map successfully captures
the X-BI nodes belonging to both research and commercial net-
works and covers the links between the ASes with high accu-
racy. We investigated various features of the Internet’s X-AS
map and its multigraph representation. Particularly, we demon-
strated the existence of power law tails in the X-BI node distri-
bution over ASes, X-BI node degree distribution and AS degree
distribution with statistically significant p-values. Lastly, we
investigated assortative mixing in AS level multigraphs. Our
results show that there is a strong correlation between low de-
gree and high degree ASes, whereas medium degree ASes are
correlated to both low degree and medium degree ASes.

In the near future, we plan to investigate alternative geolo-
cation techniques to improve the accuracy of X-AS maps and
differentiate between multiple X-BI nodes that belong to the
same AS and located in the same city. In addition, we plan
to examine the unresolved IP addresses using alternative data
sources to improve the accuracy and coverage of X-AS maps
further. Moreover, we plan to investigate private and public
peering practices at IXPs to distinguish between point-to-point
links and LANs in X-AS maps. Finally, the source code of our
implementation is available at our project website [39].
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