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Abstract The Internet not only facilitates our daily activities, such as com-
munication, entertainment and shopping but also serves as the enabling tech-
nology for many critical services, including finance, manufacturing, healthcare
and transportation. On the other hand, a wide spectrum of attacks target its
communication infrastructure to disable or disrupt the network connectivity
and traffic flow until recovery processes take place. Attacking all Autonomous
Systems (ASes) in the Internet is typically beyond the capability of an adver-
sary. Therefore, targeting a small number of ASes which results in the highest
impact is the best strategy for attackers. Similarly, it is important for network
practitioners to identify, fortify and secure those critical ASes to mitigate the
impact of the attacks. In this study we introduce an intuitive and effective
measure, IP address spatial path stress centrality, to assess and identify the
critical ASes in the Internet. We compare IP address spatial path stress cen-
trality to the three well known and widely used centrality measures, namely
customer-cone size, node degree and betweenness. We demonstrate that the
proposed measure incorporates business relations and IP address spaces to
achieve a better measure for identifying the critical ASes in the Internet.

Keywords Autonomous Systems · Internet Security · Complex Systems

1 Introduction

The Internet is not only a critical infrastructure but also an enabling tech-
nology for many other critical services. It is a highly engineered, large scale
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complex system which has no central governance. The global communication
infrastructure of the Internet is formed by thousands of autonomous networks
connecting various organizations and individuals together. These autonomous
networks are owned and operated by a diverse set of organizations including
businesses, network service providers, cloud providers, web hosting companies,
universities and government agencies all around the world.

A group of networks managed by one or more operators under a well de-
fined routing policy is called an Autonomous System (AS) in the Internet [1].
Autonomous Systems (ASes) are identified by unique AS numbers and they
connect to each other in different forms to enable the “global” Internet com-
munication [2]. Individual users, small businesses and ASes located at the edge
of the Internet participate in the global infrastructure by means of other ASes
called Internet Service Providers (ISPs). Typically, ISPs are business entities
providing Internet access service to their customers while getting the same
service from one or more upstream ISPs. At the core of the Internet, a small
number of ISPs peer with each other through settlement-free interconnections
to attain the global communication infrastructure.

The majority of the ASes (around 85%) are located at the edge of the In-
ternet and they are solely Internet access consumers. That is, they pay to ISPs
to acquire global Internet access service. Note that these ASes may be content
or service providers, yet they are consumers in terms of the Internet access ser-
vice. The ASes forming the communication infrastructure in the center, on the
contrary, are Internet access consumers and providers, simultaneously. They
provide the Internet access service to each other and consume the service from
each other. Internet access service is provided and consumed with respect to
the business relations among ASes. That is, ASes connect to each other via
business relations that define the characteristics of the Internet access service.
More importantly, inter-AS traffic in the Internet is usually routed according
to the business relations among the ASes [3].

Traditionally, business relations between ASes are categorized as customer-
to-provider (c2p), peer-to-peer (p2p) and sibling-to-sibling (s2s) [4]. In a c2p
relation, the provider AS provides global reachability to its customer AS. In re-
turn, the customer pays to the provider for the traffic exchanged between them.
In a p2p relation, two peer ASes provide mutual reachability to each other and
their customer ASes, recursively. Peer ASes typically engage in settlement-free
business agreements which means that neither party pays to the other for the
traffic exchanged. In the less frequently observed s2s relation, two ASes pro-
vide full reachability to each other because they are operated by the same or
sibling organization(s). More complex relations such as hybrid relations and
partial relations are also reported in the Internet [5]. However, c2p and p2p
relations abstract the majority of the business agreements between ASes for
practical purposes [3].

Figure 1 shows the AS-level topology graph of the Internet obtained from
CAIDA [6].The topology graph consists of 54,140 ASes connected to each
other through 466,190 relations (logical links). Among those ASes 45,796 (85%)
are located at the edge of the Internet without having any customer ASes.
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Fig. 1: Internet topology graph consisting of 54,140 ASes and 466,190 relations
(drawn using the Kamada-Kawai layout algorithm).

Put in other words, 45,796 ASes are solely Internet access consumers and the
remaining 8344 (15%) ASes provide Internet access service to organizations
and individuals. Out of 466,190 relations among the ASes, 107,195 (23%) are
c2p and 358,995 (77%) are p2p relations.

The security of the ASes forming the communication infrastructure is of
the utmost importance because many critical services depend on the Internet
as an enabling technology. Various types of attacks such as distributed denial
of service [7], crossfire [8], link cut [9], coordinated cross plane session termina-
tion [10], unauthorized router access and session hijacking [11] target the ASes,
especially the ISPs, in the Internet. The goal of those attacks is to disable or
disrupt the network connectivity and traffic flow until recovery processes take
place. Attacking all ASes in the Internet is typically beyond the capability of
an adversary. Hence, it is important for an adversary to choose a small set of
target ASes which results in the maximum traffic disruption in the Internet.
Similarly, it is important for network practitioners such as chief information
officers and IT managers to identify, fortify and secure those critical ASes to
mitigate the impact of the attacks.

In our recent work we investigated AS rankings based on their topolog-
ical characteristics including customer degree, provider degree, peer degree,
customer-cone size, alpha centrality and betweenness centrality [12]. One ma-
jor observation is that the centrality measures based on the structural charac-
teristics of the Internet topology graph fall short to capture the importance of
ASes under targeted attacks. In this study we introduce IP (Internet Proto-
col) address spatial path stress as a measure to identify and group the critical
ASes under targeted attacks in the Internet. We define the criticality of an
AS as the amount of potential traffic that it carries between the pairs of other
ASes. Hence, the criticality of an AS is proportional to the number of the
inter-AS paths passing through it as well as the amount of traffic carried via
each path. Those ASes are good candidates for attackers because they allow
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an adversary to disrupt a greater portion of the Internet traffic and negatively
affect more users. To compute the paths between pairs of ASes we use the
policy-preferred inter-AS path enumeration algorithm introduced in our ear-
lier work [13, 14]. The policy-preferred paths are free from the artifacts of
shortest paths in AS-level Internet graphs, such as inflated number of paths,
policy inconsistent paths and undesirable paths. To approximate the poten-
tial traffic exchange between pairs of ASes we use the IP address spaces of
ASes. Our observations show that large scale content consumers such as uni-
versities, government agencies and extensive businesses own larger IP address
blocks translating into larger IP address spaces. Additionally, large scale con-
tent providers such as online social media, web hosting companies and content
delivery networks own many IP address blocks summing into larger IP ad-
dress spaces. Therefore, the IP address spaces of ASes can serve as a relative
approximation of the potential traffic exchange between the ASes.

We experimentally compare the IP address spatial path stress central-
ity to the three well known and widely used centrality measures, namely
customer-cone size, node degree and betweenness. Customer-cone size is widely
used in ranking the ASes in the Internet [3]. Degree and betweenness are
two common measures in assessing the importance of nodes in complex sys-
tems [12, 15, 16, 17]. We demonstrate that the proposed IP spatial stress
centrality incorporates business relations and IP address spaces to achieve a
better measure for identifying the critical ASes in the Internet. Our empirical
results show that the most critical AS in the Internet as of this writing is
AS1299, AS174 and AS3356 run by Telianet, Cogent Communications and
Level 3 Communications, respectively.

The rest of the paper is organized as follows. We present the related work
in the next section. Section 3 gives an overview of inter-AS traffic routing
and policy-preferred AS paths in the Internet. We introduce our approach
for assessing AS criticality levels in Section 4. In Section 5, we present our
experimental results. We discuss threats and possible defense mechanisms in
Section 6. Finally, Section 7 concludes the paper.

2 Related Work

Different measures have been introduced in the literature to rank, classify and
cluster the autonomous systems in the Internet for various purposes.

A widely known measure to compare and rank the ASes in the Internet is
AS customer-cone [3]. In its generic form, the customer-cone of an AS is the
set of ASes consisting of the AS itself, its customer ASes and the customer-
cones of those customer ASes. This measure reflects the position of an AS in
the semi-hierarchical structure of the Internet as well as the routing influence
of the AS in the Internet. However, multi-homing and peering practices in the
Internet introduces multiple paths that bypass upstream providers. Therefore,
the routing influence of an AS in the Internet might be different from the one
reflected by its customer-cone.
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Zimmerli et al., [18] suggested an AS rating approach based on the tracer-
oute collected performance metrics. They ranked ASes based on the network
performance within the ASes and the performance of their neighboring ASes.
This ranking scheme is highly volatile because it is sensitive to the real time
changes in the Internet. Besides, it is difficult to scale the technique to the
entire Internet.

Clérot and Nguyen proposed an AS ranking heuristic based on the concept
of alpha-centrality in social network analysis [19]. Their heuristic starts from
an undirected graph of ASes and gradually introduces asymmetry by allowing
directed edges reinforce the relationships between ASes. The rank score of
an AS includes the centrality of the AS as well as the centralities inherited
from the neighboring ASes. The authors show that the ranking results of their
heuristic is quite close to the simple degree-based centrality. This method
requires careful selection of parametric values and it may artificially rank the
ASes with many neighbors higher.

In another study, Wagner et al., [20] proposed an AS ranking method
for detecting the ASes which provide transit services to the ASes that host
malicious software and services. The authors use existing AS scores reflecting
the malware hosting capacity of ASes to annotate AS graphs and use PageRank
to rank the ASes.

Finally, in [21] the authors classify ASes as large ISPs, small ISPs, customer
ASes, university ASes, Internet exchange point ASes and network information
center ASes using supervised learning.

In this study, we develop an intuitive and effective measure to assess the
criticality levels of ASes from a targeted-attacks perspective. Our measure
incorporates IP address spaces of ASes and policy-preferred paths between
ASes together to evaluate ASes’ impact on the overall Internet traffic under
targeted attacks.

3 Background

Before introducing our approach to assess the criticality levels of ASes, we
present a brief background on inter-AS traffic routing and policy-preferred AS
paths in the Internet.

3.1 Inter-AS Traffic Routing

ASes in the Internet use the Border Gateway Protocol (BGP) [22] to exchange
information about how to reach blocks of contiguous IP addresses (IP address
prefixes). Essentially, the reachability information consists of an IP address
prefix, one or more AS paths to reach the prefix and a set of AS path at-
tributes. BGP supports a wide variety of AS path attributes and allows prefix
withdrawals as well [22]. An AS willing to deliver traffic to the devices within
an IP address prefix originates a BGP advertisement declaring the prefix and
its AS number as the path to the prefix. This advertisement is sent to the
neighboring ASes of the originating AS. The neighboring ASes independently



6 A. Y. Nur and M. E. Tozal

decide to employ, drop and/or re-advertise the new IP address prefix with or
without modifying any AS path attributes. A neighboring AS willing to tran-
sit traffic destined to the new IP address prefix, re-advertises the prefix to its
own neighbors by prepending its AS number in the path. The neighbors of a
re-advertising AS repeat the same process. Hereby, multiple AS paths to an IP
address prefix gets disseminated in the Internet through neighbor-to-neighbor
BGP advertisements while each AS independently selects/employs a path(s)
toward the prefix. The traffic however, follows the reverse AS path direction
to reach from a source AS to the destination AS that originated the prefix.

BGP protocol allows a path toward a routing prefix to be incrementally dis-
seminated in the Internet through neighbor-to-neighbor advertisements. How-
ever, the ASes do not have to re-advertise a prefix that they learn from a
neighbor to their other neighbors. In fact, AS path advertisements are locally
assessed according to the business relations among ASes and their neighbors.
Typically, an AS receiving a prefix advertisement from one of its customers
re-advertises the prefix to its providers, peers and other customers because
it charges the advertising customer for the transit traffic. Similarly, an AS
receiving a prefix advertisement from one of its peers re-advertises the prefix
only to its customers because transiting traffic between a peer and a provider
costs money and transiting traffic between two peers adds additional load on
its network without any financial gain. An AS receiving an advertisement from
multiple neighbors prefers the path from a customer over a peer and from a
peer over a provider. Because, ASes charge their customers, do not pay to
their peers and pay to their providers for the traffic exchanged between them,
respectively. Finally, ASes prefer the shorter paths over the longer equal-cost
paths. In summary, the existence of an AS path in an Internet topology graph
does not necessarily mean that the path is promoted by BGP for utilization.
The paths are utilized according to the business relations between the ASes.

3.2 Policy-Preferred AS Paths

In the previous part we outlined how AS path information for an IP address
prefix propagates in the Internet. An AS path from a source AS to a destination
AS in a topology graph reflects the path taken to reach the IP address prefixes
originated by the destination AS. Hence, computing AS paths in a business
relations annotated AS-level Internet topology graph helps us to sketch the
inter-AS traffic routes in the Internet. However, reducing an AS-level Internet
topology map into an undirected graph and computing the shortest paths
between pairs of ASes do not reflect the actual paths employed. Simply, it
ignores the business relations or policies between ASes. Therefore, it usually
inflates the number of paths between ASes; introduces erroneous paths that
do not conform to economic policies; and/or generates symmetric paths, which
in reality is not a rule.

In our earlier work we introduced a single-destination, policy-preferred path
enumeration algorithm which discovers policy consistent paths from all ASes
to a given destination AS in an AS-level Internet topology graph [13, 14]. The



Identifying Critical Autonomous Systems in the Internet 7

algorithm provides a holistic solution to the AS-level path enumeration prob-
lem by incorporating common practices and incentives in inter-AS routing, in-
cluding first-hop-edge policy preferred paths, valley-free preferred paths, and
shortest-distance, equal-cost preferred paths [13]. Given an AS-level Internet
topology graph and a destination vertex, the algorithm starts from the des-
tination vertex and incrementally builds AS paths in backwards from source
vertices toward the destination vertex. At each iteration, a new vertex is joined
to the subgraph of the established, policy-preferred paths toward the destina-
tion vertex via one or more edges. At the end, the algorithm returns a rooted,
directed, acyclic subgraph (r-DAG) of the input graph, which is formed by
policy-preferred paths from the source vertices toward the destination vertex.
The time complexity of the algorithm is the same as Dijkstra’s shortest path
algorithm with a priority queue implementation.

The proposed IP address spatial path stress centrality in this study utilizes
the policy-preferred AS paths, because the shortest paths algorithm on the
undirected graph representation of the Internet introduces erroneous paths
that violate policy consistency.

4 Methodology

In this section, we introduce autonomous system IP address spaces as a heuris-
tic for the potential traffic intensity of AS paths in the Internet. Next, we
develop IP address spatial path stress centrality as a measure to identify the
critical ASes in the Internet.

4.1 AS IP Address Spaces

Enumerating policy-preferred paths in an AS-level Internet topology graph
helps us to learn the route(s) from a source AS to a destination AS toward the
IP address prefixes originated by the destination AS. However, it does not tell
us anything regarding the potential traffic intensity between the two ASes.

In this study we define the IP address scope of an advertised routing prefix
as the number of the assignable IP addresses of the prefix. The scope of an
IPv4 routing prefix, p, of prefix length l is 2(32−l) including the subnet and
broadcast addresses. Since an AS can originate more than one routing prefix,
we define the IP address space of an AS, IAS , as the sum of the IP address
scopes of the originated routing prefixes.

IAS =
∑

pi∈AS

2(32−li) (1)

where pi is an IP address prefix originated by the AS and li is the correspond-
ing prefix length.

We heuristically state that the paths between ASes having larger IP address
spaces have more traffic intensity compared to the paths between ASes having
smaller IP address spaces. Our heuristic is based on the following observations:
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Fig. 2: Advertised prefix length distribution.

– ASes that belong to large scale content providers, web hosting companies
and content delivery networks, e.g., Facebook, Godaddy and Akamai, ad-
vertise multiple routing prefixes that sum up to larger IP address spaces.

– ASes belonging to large scale private/public organizations, universities and
government agencies, e.g., National Institute of Standards and Technology
and University of Louisiana, advertise one or more large scope routing
prefixes that translate into larger IP address spaces.

– ASes that belong to residential and mobile Internet access providers, e.g.,
Cox and Verizon, advertise multiple routing prefixes that sum up to larger
IP address spaces.

The first and second observations imply that content provider networks
have larger IP address spaces. The second and third observations imply that
content consumer networks also have larger IP address spaces. As a practical
heuristic, the paths between larger IP address space ASes potentially have
higher traffic intensity compared to the paths between smaller IP address
space ASes.

Note that the scope of an IP address prefix does not directly correspond
to the in-use IP addresses, i.e., the prefix may be underutilized. An alterna-
tive method to estimate the IP address spaces of ASes is to actively probe
all or a sample of their routing prefixes. This approach is costly because of
the long probing duration and significant probing traffic overhead. Moreover,
it introduces its own type of artifact due to private IP address deployments
behind NAT (Network Address Translation) boxes, non-responsive host con-
figurations and rate limiting practices by ISPs. On the other hand, the best
approach which is having a global inter-AS traffic matrix compiled by ISPs is
not available to the best of our knowledge. Typically, network operators do
not share this information due to security and business concerns.
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The ASes in our dataset originate more than 649,701 routing prefixes.
Figure 2 shows the prefix length distribution of the advertised routing prefixes.
In the Figure, 98% of the prefix lengths are between /16 and /24 such that
55% of them are /24s. An examination of Figure 2 suggests that the larger IP
address scopes (smaller prefix length) on the left tail and the smaller scopes
(larger prefix length) on the right tail are outliers. To reduce the impact of
the outliers on IP address space estimations we replace the prefix lengths
on the left tail by a /16 and the ones on the right tail by a /24. Note that
our technique is similar to omitting the outliers on the tails of an empirical
distribution. Instead of omitting the outliers we project them, because those
outlying routing prefixes accommodate in-use IP addresses as well.

4.2 Identifying Critical ASes

In this part we develop IP spatial path stress centrality, C, to identify the
critical ASes in an AS-level topology graph of the Internet. Let PS,T (R) = {S,
. . . , R, . . . , T} be a sequence of ASes denoting a path between a source AS, S,
and a destination AS, T , passing through an intermediate AS, R. Let IS and
IT be the IP address spaces of the source AS, S, and the destination AS, T ,
respectively. Let TS,T be the traffic intensity of the path PS,T (.). Based on the
discussions in Section 4.1, we define the traffic intensity of the path PS,T (.) as

TS,T = ISIT (2)

=

∑
pi∈S

2(32−li)

∑
pj∈T

2(32−lj)


In practice, Equation 2 can be normalized by either taking the logarithm

of the traffic intensity or by dividing it by 264. We define the IP spatial path
stress centrality, CR, of the intermediate AS, R, as

CR =
∑

∀PS,T (R)

TS,T (3)

such that S 6= T 6= R. The IP spatial path stress of an AS is equal to the
sum of the traffic intensities of the paths passing through it. The centrality
measure not only reflects the number of paths passing through an AS but
also the inferred intensity of the traffic transited by the AS in the Internet.
Naturally, those ASes having higher IP spatial path stress values are good
candidates for attacks because they allow an adversary to disrupt a greater
portion of the Internet traffic and negatively affect more users.

5 Experimental Results

In this section we experimentally analyze the results of the IP spatial stress
centrality as well as compare it to other centrality measures. In the first part,
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Table 1: AS frequency distribu-
tion by criticality levels

C-1 1 C-8 3 C-15 8 C-22 33
C-2 1 C-9 2 C-16 5 C-23 42
C-3 2 C-10 3 C-17 5 C-24 63
C-4 2 C-11 4 C-18 8 C-25 82
C-5 1 C-12 2 C-19 9 C-26 177
C-6 2 C-13 3 C-20 8 C-27 447
C-7 3 C-14 3 C-21 21 C-28 7121

Fig. 3: AS-level Internet topology map. ASes are clustered by their levels of
criticality.

we compute the IP spatial stress centrality on the observed topology of the
Internet and examine the most critical ASes in the Internet. In the second part,
we compare our results to the three well known and widely used AS centrality
measures, namely customer cone size, node degree and betweenness [3, 12, 15,
16, 17].

5.1 Empirical Analysis

In the following, we compute the IP spatial path stress centralities of the ASes
in our dataset and cluster the ASes with respect to their criticality levels. We
use ck-means algorithm [23] to cluster the ASes with respect to their IP spa-
tial stress centralities. The ck-means algorithm uses a dynamic programming
strategy to cluster univariate data by minimizing the total within-cluster sums
of squares. Different from the classical k-means algorithm, ck-means finds a
unique, optimal cluster separation for one dimensional data and guarantees
reproducible results.

The ASes at the edge of the Internet do not transit any traffic belonging
to other ASes. Therefore, the IP spatial stress centralities of those ASes are
zero and they form their own cluster. Transit ASes forming the communication
infrastructure of the Internet, however demonstrate 28 distinct clusters such
that the top level critical AS cluster is C-1 and the bottom level cluster is
C-28. Figure 3 shows the critical ASes color and size differentiated where the
IP spatial stress centrality increases from orange to red. The ASes having zero
centrality are shown in yellow in the figure. Table 1 shows the AS frequency
distribution by the levels of criticality. The table shows that the bottom eight
levels of criticality (C-21 thru C-28) accommodate majority of the transit
ASes; 7,986 ASes in total. On the other hand, the top eight levels of criticality
(C-1 thru C-8) accommodate only 15 ASes.

Table 2 shows the top 15 ASes in the top eight levels of criticality as well
as their organizations, the number of their customers, providers and peers.
The top AS in the table is AS1299 run by Telia international carrier. Telianet
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Table 2: Top-15 critical ASes in the Internet w.r.t IP spatial stress centrality

Rank AS Number Organization Customers Providers Peers Cluster

1 AS1299 Telianet 1257 0 174 C-1
2 AS174 Cogent Comm. 4881 0 225 C-2
3 AS3356 Level 3 Comm. 4368 0 62 C-3
4 AS6939 Hurricane Elect. 986 2 4596 C-3
5 AS3257 GTT Comm. 1376 0 155 C-4
6 AS2914 NTT Comm. 1364 0 100 C-4
7 AS3549 Level 3 Comm. 1045 3 2709 C-5
8 AS7018 AT&T Services 2360 0 57 C-6
9 AS6453 Tata Comm. 655 0 95 C-6
10 AS2516 KDDI Corp. 214 6 111 C-7
11 AS4809 China Telecom 127 15 43 C-7
12 AS701 MCI Comm. 1328 0 30 C-7
13 AS209 Qwest Comm. 1685 0 71 C-8
14 AS12989 Eweka Internet 91 13 1699 C-8
15 AS43531 IX Reach 232 4 1813 C-8

is based in Sweden and it is Europe’s largest telephone and mobile network
provider operating in Europe and Asia. AS1299 is followed by AS174 (Cogent
Communications), and AS3356 (Level 3 Communications). Cogent Commu-
nications is a multinational ISP based in the US and it is specialized in pro-
viding high speed Internet access service all over the world. Level 3 is another
US based telecommunications company providing Internet access service to
medium sized ISPs in North America, Latin America and Europe.

In Table 2, nine ASes, i.e., AS1299, AS174, AS3356, AS3257, AS2914,
AS7018, AS6453, AS701 and AS209, are tier-1 ASes that bind the Internet
together only through peer relations. These ASes are located at the core of
the Internet and they do not have any providers as shown in the “Providers”
column. Moreover, these tier-1 ASes in Table 2 have relatively higher number
of customers and lower number of peers. Further analysis shows that those
ASes have very high number of c2p descendants (customer-cone). Since those
tier-1 ASes undertake the role of bridging different parts of the Internet, they
appear on many paths between pairs of ASes and have very high IP spatial
stress centralities.

A more interesting observation in Table 2 is the six transit ASes, i.e.,
AS6939, AS3549, AS2516, AS4809, AS12989 and AS43531, that are not con-
sidered as tier-1. These ASes are not part of the tier-1 ASes because they do
not participate in the largest, fully connected clique in the Internet, i.e. they
attain the global Internet access through their providers and peers. Yet, they
have very high IP spatial stress centralities, even higher than some of the tier-1
ASes. Among those ASes, AS6939, AS3549, AS12989 and AS43531 have very
high number of peers. Peering allows those ASes to appear more frequently on
the paths between their own descendants as well as their peer’s descendants
which also have larger IP address spaces. On the other hand, AS2516 and
AS4809 have relatively small number of customers and peers. Further anal-
yses show that these ASes have large number of descendants with large IP
address spaces and they peer with similar ASes. Therefore, they appear on
many paths having high inferred traffic intensity as well.
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5.2 Comparitive Analysis

In this part, we compare IP spatial stress centrality to other three well known
and widely used AS centrality measures, namely customer cone size, node
degree and betweenness.

AS customer-cone size is a widely used measure to study the ASes in the
Internet in terms of their routing capability [3]. In general, customer-cone of
an AS is recursively defined as a set consisting of the AS itself along with
its customers’ customer-cones. That is, the customer-cone of an AS is a set
consisting of the AS itself and its customer descendants. The customer-cone
of an AS corresponds to a sub-topology where the connected component is
formed through c2p relations. Customer-cone size, the number of ASes in the
customer-cone of an AS, may show the importance of the AS regarding the
global traffic routing in the Internet.

Degree is another measure widely used in complex systems domain to ex-
amine the “key” or “important” nodes in a graph [17]. It is defined as the
number of edges of a given vertex in an undirected graph. For directed graphs,
indegree and outdegree centralities specify the number of incoming and outgo-
ing edges, respectively. To compute the degree, we transformed the AS topol-
ogy map of the Internet into an undirected graph consisting of 54,140 nodes
and 466,190 links. Since the ASes at the edge of the Internet do not transit
any inter-AS traffic and collectively have zero IP spatial stress centrality, we
use the ASes in the center of the Internet for the comparison.

Betweenness is a measure that quantifies the centrality of a vertex in terms
of its involvement in connecting pairs of vertices in a graph [15, 24]. Formally,
betweenness centrality of a vertex vk is defined as β(vk) =

∑
σvivj (vk)/σvivj

such that σvivj is the number of the shortest paths between vertices vi and
vj and σvivj (vk) is the number of those paths that pass through vk where
vi 6= vj 6= vk. Betweenness is used to assess the load of nodes in telecommu-
nication networks [15, 25]. Similar to the degree, we use the undirected graph
representation of the Internet to compute betweenness and used only the tran-
sit ASes in the center for the comparison. The betweenness’ of the edge ASes
are zero, since they do not transit any traffic belonging to other ASes.

To motivate the reader, Table 3 shows the top-15 ASes ranked based on
IP spatial stress, degree, customer-cone size and betweenness. IP spatial stress
centrality (first column) and customer-cone size (third column) have ten ASes
in common in their top-15 lists. However, none of those ASes are ranked at the
same position in both ranking schemes. Please note that the the percentage of
common ASes quickly decays for top-k lists where k ≤ 300 (See Section 5.2.2).
Similarly, IP spatial stress centrality shares eight ASes and ten ASes with
degree (second column) and betweenness (fourth column) in their top-15 lists,
respectively. However, only two of those ASes, AS174 and AS3356, appear
at the same position between IP spatial stress and degree centralities as well
as IP spatial stress and betweenness centralities. AS174, belonging to Cogent
Communications, is a multinational, tier-1 ISP based in the US. It has 4,881
direct customers that primarily use AS174 for Internet access. It frequently
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Table 3: Top-15 critical ASes in the Internet w.r.t different AS characteristics

IP Spatial Stress Degree Customer Cone Size Betweenness

1 AS1299 AS6939 AS3356 AS6939
2 AS174 AS174 AS1299 AS174
3 AS3356 AS3356 AS174 AS3356
4 AS6939 AS3549 AS3257 AS3549
5 AS3257 AS24482 AS2914 AS7018
6 AS2914 AS7018 AS6453 AS1299
7 AS3549 AS8220 AS4436 AS209
8 AS7018 AS43531 AS701 AS4323
9 AS6453 AS20485 AS6762 AS2914
10 AS2516 AS4323 AS7018 AS701
11 AS4809 AS36351 AS6939 AS3257
12 AS701 AS12989 AS209 AS6461
13 AS209 AS10026 AS3320 AS9498
14 AS12989 AS209 AS5511 AS20485
15 AS43531 AS34224 AS1239 AS2828

appears on the paths from those customers to other ASes in the Internet, which
increases its rank in terms of both betweenness and IP spatial stress centrality.
Similarly, AS3356, owned by Level 3 Communications, is a multinational, tier-
1 ISP based in the US. Again, it has a high number of direct customers, 4,368,
which improves its rank in terms of both betweenness and IP spatial stress
centrality.

The rank discrepancies among top-15 lists of IP spatial stress centrality,
customer-cone size, degree and betweenness do not solely demonstrate the
overall discrepancy among those different ranking schemes. First of all, the
amounts of concordance/discordance in top-15 lists are not representative for
the whole dataset. Second, one may in general be interested in top-k lists
such that k assumes any positive integer, e.g., 20, 50 or 100. In the following
we first study the amount of concordance/discordance among rankings by
different characteristics in the whole dataset. Next, we extend our analysis to
the top-k lists where k is a positive integer less than the dataset size.

5.2.1 Complete Rank Correlations

Given a finite set of objects, S = {s1, s2, . . . , s|S|}, ranking is a binary relation
R = {(si, sj) ⊂ S × S} denoting the first element “precedes” (or “succeeds”)
the second element while satisfying irreflexivity, (si, si) /∈ R; antisymmetry,
(si, sj) ∈ R ⇒ (sj , si) /∈ R; and transitivity, (si, sj) ∈ R, (sj , sk) ∈ R ⇒
(si, sk) ∈ R [12]. We adopt the matrix notation introduced by Emond and
Mason [26] to represent ranking relations among the objects of a set. An
|S| × |S| rank matrix, R, over a set S is formulated as follows:

R[i, j] =


1 if i precedes or tied with j

0 if i = j

−1 if i succeeds j

(4)

Equation 4 allows the distances between ranking schemes abide by Kemeny-
Snell axioms ensuring non-negativity, symmetry, triangle inequality and rank
consistency. A rank correlation coefficient is a statistic for measuring the
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strength of ordinal association between two ranking schemes. Given two rank
matrices RA and RB (Equation 4) over a set S, τx [26] is defined as:

τx =

|S|∑
i=1

|S|∑
j=1

RA[i, j]RB [i, j]

|S|(|S| − 1)
(5)

where |S| denotes the cardinality of S. The numerator of Equation 5 increases
as the rank matrices RA and RB are concordant on the relative orderings of
pairs of objects. Similarly, the numerator decreases for discordant object pairs
under the two ranking schemes. τx takes values between −1 and 1 such that
−1 denotes perfect disagreement and 1 denotes perfect agreement between the
two ranking schemes.

Table 4 shows the rank correlations between IP spatial stress and customer-
cone size, degree and betweenness. The table does not demonstrate any strong
rank correlation between IP spatial stress and other AS characteristics.

Table 4: Rank Correlation Coefficient τx

Degree Customer-Cone Size Betweenness

IP Spatial Stress 0.39 0.53 0.51

Degree is a measure to evaluate the criticality of a node under targeted
attacks in complex systems, especially in scale-free graphs. We do not observe
a strong correlation between degree and IP spatial stress in Table 4, because
higher degree does not necessarily mean an AS is more critical in the Internet
topology. First of all, ASes having many providers and less many customers do
not carry inter-AS traffic for their providers. Yet, their providers contribute to
their total degree. Second, 77% of the edges in our Internet topology graph are
p2p links. Although, an AS may have many customers, those customers prefer
to use their p2p links to route their traffic instead of using their providers via
c2p links. IP spatial stress centrality, the measure introduced in this study,
accounts for those paths employing p2p links while degree centrality simply
fails to capture their impact on traffic routing.

We observe a moderate level of correlation, 0.53, between IP spatial stress
and customer-cone size (Table 4). Customer-cone size has been an important
metric that reflects the routing capability of an AS. However, the Internet
has evolved from a semi-hierarchical topology to a flatter topology in the last
decade [27] mostly due to the increasing number of p2p links. As a result,
the descendants of an AS having a large customer cone, prefer routing the
traffic through their peers instead of upstream provider(s) when possible. IP
spatial stress centrality naturally accounts for those paths that do not utilize
upstream providers in the semi-hierarchical topology.

Similarly, we observe a moderate level of correlation, 0.51, between IP spa-
tial stress and betweenness (Table 4). Note that betweenness is usually com-
puted on an undirected graph transformation of the Internet topology map.
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Therefore, betweenness accounts for shortest paths between pairs of ASes re-
gardless of the types of relations, i.e., c2p, p2p, among ASes. On the other hand
inter-AS traffic in the Internet is routed according to the economic incentives
which are reflected by relation types among ASes. Specifically, an AS prefers to
use a longer path over the shortest path if the longer path is economically more
advantageous [13, 14]. IP spatial stress centrality uses policy-preferred paths
which is congruent with the economy of the Internet. Moreover, betweenness
ignores the IP address spaces of ASes. That is, a path incident on a large IP
address space AS is equivalent to a path incident on a small IP address space
in terms of the impact. IP spatial stress centrality, on the other hand accounts
for the IP address spaces of source and destination ASes of inter-AS paths
(Equation 3).

5.2.2 Incomplete Rank Correlations

Above, we studied the correlation between IP spatial stress centrality and de-
gree, customer-cone size and betweenness over the whole dataset. However,
one may be interested in only top-k critical ASes and the amount of concor-
dance/discordance among top-k lists may become more important then the
correlation over the whole dataset. Moreover, the discrepancies among dif-
ferent measures in complete rank correlations do not necessarily imply that
they hold in incomplete rank correlations as well. In the following we analyze
the correlation of top-k lists between IP spatial stress centrality and degree,
customer-cone size and betweenness.

One particular problem in rank correlation for top-k lists is incomplete
rankings. That is, two top-k lists might have objects that show up in one list
but not appear in the other list. We extend Emond-Mason τx for incomplete
rankings by appending the objects appearing in one list to the other while
preserving the order in the former list. The append operation is applied to
both lists to achieve a common domain between both top-k lists. The intuition
behind the append operation is that the objects appearing in one top-k list
but not appearing in the second are ranked lower than all objects in the second
top-k list. Otherwise, they would have appeared in the top-k of the second list.
Hence, we properly penalize for the differences between the two top-k lists. On
the other hand, we do not penalize for the within-order of list differences by
preserving the order in the former list. Because, the general assumption is that
one does not have access to the order of the objects beyond k in top-k lists.
Therefore, our incomplete rank correlation gives an upper correlation bound.

Figures 4a and 4b respectively show the incomplete rank correlations and
the percentage of common ASes between IP spatial stress centrality and de-
gree, customer-cone size and betweenness sampled at every 15 ASes.

In Figure 4a, the rank correlation between IP spatial stress and degree
increases to 0.21 at top-60 list followed by a sharp decrease until 0.09 at top-
270. In the same interval the ratio of common ASes (Figure 4b) decreases
from 0.53 to 0.28 and fluctuates around 0.28. The behavior shows that the
common ASes between IP spatial stress and degree quickly decays and causes
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(a) Top-k incomplete rank correlation.
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(b) Top-k common AS ratio.

Fig. 4: Comparison of top-k lists between IP spatial stress centrality and de-
gree, customer-cone size and betweenness.

low correlation between the two centrality measures. The ratio of common
ASes fluctuates roughly around 0.28 until top-885 list, then experiences a sharp
increase until top-1800 list and then, the increase continues at a slower rate.
However, the incomplete rank correlation unexpectedly gets lower between top-
885 and top-1800 lists. Analyzing the dataset further shows that although the
ratios of common ASes between top-885 and top-1800 increase, the ASes are
ranked very differently in top-k lists of IP spatial stress and degree centralities.
Therefore, their incomplete rank correlations do not increase along with the
ratios of common ASes. The correlation and ratio of common ASes increase
together after top-1800 list yet, the correlation only reaches to 0.39 for the
whole dataset.

In Figure 4a, the rank correlations between IP spatial stress and customer-
cone size decrease from 0.48 at top-15 to 0.26 at top-840. It stays roughly
around 0.27 until top-1320 and increases thereafter. Figure 4b, on the other
hand demonstrates a decrease in the ratio of common ASes from 0.57 at top-15
to 0.52 at top-315. The ratio monotonically increases after top-315. We have
observed a similar behavior such that the ratio of common ASes increases
between top-315 and top-1320, however the rank correlation continues to de-
crease because the ASes in those lists are ranked very differently with respect
to IP spatial stress and customer-cone size.

Lastly, Figure 4a shows that the rank correlations between IP spatial stress
and betweenness decrease from 0.47 at top-15 to 0.25 at top-135. After top-
135, the correlations demonstrate an increasing trend up to 0.51 for the whole
dataset. We observe a similar pattern in Figure 4b for the ratio of common
ASes between IP spatial stress and betweenness centralities. That is, the cor-
relation decreases/increases with respect to the ratio of common ASes in both
top-k lists.
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In summary, IP spatial stress centrality is significantly different from other
measures, i.e., degree, customer-cone size and betweenness, regarding the whole
dataset as well as the top-k critical AS lists. Unlike the other measures, IP
spatial stress centrality incorporates business relations and IP address spaces
to achieve a better measure for identifying critical ASes in the Internet.

6 Threats and Defense Mechanisms

In this section, we discuss the defense mechanisms against the cyber attacks
targeting the routing infrastructure of the Internet through critical ASes rather
than the attacks targeting the individual hosts in the Internet.

BGP speaking routers use TCP sessions to communicate the routing up-
dates. Perpetrators can conduct well-known attacks including BGP message
eavesdropping, modification, insertion, deletion and replay. In addition, BGP
neither enforce any widely supported, strong authentication mechanisms nor
does it strictly impose AS number, IP address prefix, route origination or AS
path validation. Therefore, it is necessary to ensure the confidentiality, in-
tegrity and assurance of BGP messages in a scalable fashion [28]. An early
work [29] proposed a general security mechanism by taking advantage of Pub-
lic Key Infrastructures (PKIs) which allow routers to identify each other. Al-
though the proposed mechanism induced high overhead on routers and suffered
from scalability issues [30], it demonstrated that PKIs can play an important
role in routing security. Secure BGP (S-BGP) [31] is a comprehensive routing
security framework focusing on the BGP protocol. S-BGP uses two PKIs where
the first one is employed for IP prefix attestation and the second one is for AS
number attestation. This scheme requires the route attestation information via
an attribute in BGP UPDATE messages. AS numbers and IP prefix owner-
ships in any routing update messages are authenticated through the PKIs. Also
each AS on a path is required to include attestation information in BGP ad-
vertisements. Although S-BGP is comprehensive, it induces high overhead on
BGP speaking routers. Secure Origin BGP (SoBGP) [32] reduces the overhead
of S-BGP. Similar to S-BGP, SoBGP takes advantage of PKIs to authenticate
and authorize ASes. It defines a new BGP message type, SECURITY, which
delivers the necessary certificates to validate routes. Using the SECURITY
messages, routers create a network topology map and validate the received
BGP updates. Inter-domain Route Validation (IRV) [33] is a protocol for de-
centralized route security. The approach requires each AS to deploy an IRV
server into its network. BGP speaking routers can query the IRV servers to vali-
date the advertised routes. Secure Blockchain Trust Management (SBTM) [34]
is a trust management systems to secure the inter-domain routing by taking
advantage of blockchain-based PKI. An IP prefix is typically originated by a
single AS in the Internet, because prefixes originated by more than one AS,
Multiple Origin AS (MOAS), may imply prefix hijacking. Nevertheless, some
large ISPs legitimately use MOAS for traffic engineering practices. Therefore,
prefix origin authentication methods are employed to solve prefix ownership
conflicts [35]. Prefix Hijacking Alert System (PHAS) [36] maintains a database
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of routing information to identify IP prefix hijacking events. The routing in-
formation is collected from BGP monitoring projects such as Routeviews and
RIPE and prefix ownership conflicts are reported to the ASes via email.

In addition to the attacks exploiting the BGP protocol, perpetrators can
conduct DoS attacks and the variants [37, 38, 39] to flood the routers and links
of the critical ASes. The defense mechanisms against the DoS attacks can be
divided into three parts: attack detection, attack reaction and attack pre-
vention. Attack detection mechanisms monitor or sample traffic to detect the
DoS/DDoS attacks. MUltiLevel Tree for Online Packet Statistics (MULTOPS)
detects bandwidth attacks by monitoring the packet rate between hosts in the
Internet [40]. MULTOPS is based on the assumption that the packet rates
between two machines remain proportional during regular operation hours.
Hence, a dramatic increase in packet rates indicates the existence of a tar-
geted attack. Another approach is based on the assumption that the set of
the source IP addresses do not drastically change during the regular operation
hours [41]. Hence, a drastic increase in terms of new IP addresses indicates the
existence of a distributed, targeted attack. Attack reaction techniques involve
resource management to mitigate the impact of DoS/DDoS attacks. Aggregate
based Congestion Control (ACC) mechanism suggests monitoring and control-
ling high bandwidth aggregates at routers [42]. An aggregate corresponds to
a collection of packets sharing a common property such as source address,
destination address, protocol type or application type. The ACC mechanism
identifies the aggregates causing congestions and rate limit the aggregates at
the local or upstream routers. This method is effective not only for DDoS
attacks but also for flash crowds. A short term but immediately effective so-
lution requires deploying redundant network resources to absorb the rogue
traffic during an attack. High profile service providers such as Microsoft and
Yahoo dynamically increase service and network resources during attacks [43].
Although this type of reaction minimizes the impact of attacks in a timely
fashion, it can still fail under persistent attacks. Attack prevention techniques
aim to control targeted attacks before they reach to the victims. Ingress fil-
tering [44] is an effective approach to drop the rogue traffic at the first AS.
It requires each ISP checking the source IP addresses of the outgoing packets
and filtering them if the source IP addresses do not belong to their IP address
spaces, i.e., spoofed. ScoreForCore [45] is a statistical packet filtering mecha-
nism to defend a victim site against DDoS attacks. In the proposed method,
each packet’s score is computed based on its attributes, including IP address,
port number, packet length, TTL value and TCP flags. Then, the packets
having a score below than a threshold value are discarded.

Attacks targeting critical ASes result in larger scale traffic disruptions in
the Internet, which in turn may affect other critical services running on top of
the Internet. On the other hand, there is no off-the-shelf defense mechanism
that handles all types of threats. Therefore, it is necessary for critical ASes to
deploy several defense mechanisms covering different types of attacks.



Identifying Critical Autonomous Systems in the Internet 19

7 Conclusions

In this study we introduced IP address spatial path stress centrality as a
measure to identify and group the critical ASes in the Internet. Evaluating the
criticality of ASes not only guides adversaries to disrupt the Internet traffic
with minimum resources but also provides network practitioners with insight
on the pivotal ASes in the Internet. We define the criticality of an AS as
the amount of potential traffic that it carries between pairs of ASes. Hence,
the criticality of an AS is proportional to the number of the policy-preferred
inter-AS paths passing through it as well as the traffic intensities of the paths.

Our empirical results show that the transit ASes in the observed Internet
topology can be grouped into 28 levels of criticality such that 15 ASes form
the set of the most critical ASes. These top-15 ASes frequently appear on the
high intensity AS-to-AS paths. The most critical AS in the observed Internet
topology is found to be AS1299 (Telianet) followed by AS174 (Cogent Com-
munications), and AS3356 (Level 3 Communications). Nine of the top-15 ASes
are tier-1 ASes whereas six of them are just transit ASes. Further investigation
has shown that these six ASes are more critical than some of the tier-1 ASes,
because they either have high numbers of peering ASes or they have many
descendants with larger IP address spaces.

We compared the IP address spatial path stress centrality to the three well
known and widely used centrality measures, namely customer-cone size, node
degree and betweenness. Experimental results demonstrate significant differ-
ence in both complete and incomplete rank correlations among them. Because,
the proposed IP spatial stress centrality incorporates business relations and
IP address spaces to achieve a better measure for identifying critical ASes in
the Internet.
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